• Title/Summary/Keyword: glucose-1 oxidase

Search Result 196, Processing Time 0.026 seconds

Development of Optical Fiber Glucose and Lactate Biosensors for Bioprocess Monitoring (생물공정 모니터링을 위한 광섬유 포도당 및 젖산 센서의 개발)

  • Jung, Chang Hwan;Sohn, Ok-Jae;Rhee, Jong Il
    • KSBB Journal
    • /
    • v.32 no.1
    • /
    • pp.35-45
    • /
    • 2017
  • In this work the optical fiber glucose and lactate biosensors were developed by using fluorescent dye and enzyme immobilized on the end tip of an optical fiber. 3-Glycidyloxypropyl)methyldiethoxysilane (GPTMS), (3-Aminopropyl) trimethoxysilane (APTMS) and Methyltrimethoxysilane (MTMS) were used to immobilize glucose oxidase (GOD), lactate oxidase (LOD) and ruthenium(II) complex (tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II), $Ru(dpp)_3^{2+}$) as oxygen sensitive fluorescent dye. MTMS sol-gel was an excellent supporting material for the immobilization of $Ru(dpp)_3^{2+}$, GOD, and LOD on the optical fiber. Storage stability of the optical fiber glucose sensor was kept constant over 20 days, while the optical fiber lactate sensor had constant storage stability over 17 days. The optical fiber glucose and lactate biosensors also maintained good operational stability for 20 hours and 14 hours, respectively. The activities of the immobilized enzymes were most excellent at pH 7 and at $25^{\circ}C$. On-line monitoring of glucose and lactate in a simulated process was performed with the optical fiber glucose and lactate biosensors. On-line monitoring results were agreed with those of off-line data measured with high performance liquid chromatography (HPLC).

Performance Enhancement of Biofuel Cell by Surface Modification of Glucose Oxidase using Ferrocene Carboxylic acid (페로신카르복시산을 이용한 글루코스 산화효소의 표면개질에 의한 바이오 연료전지 성능향상)

  • JI, JUNGYEON;CHRISTWARDANA, MARCELINUS;CHUNG, YONGJIN;KWON, YONGCHAI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.5
    • /
    • pp.526-532
    • /
    • 2016
  • In this study, we synthesized a mediator immobilized biocatalyst([FCA/GOx]/PEI/CNT) by surface modification using ferrocene carboxylic acid(FCA), and evaluated its performance as anode catalyst for biofuel cell. Through the application of FCA on glucose oxidase (GOx), the free amine groups on the lysine residue of GOx surface reacted with carboxylic acid of FCA and make amide bond between GOx and FCA. As the result of that, the electron transfer of catalyst was increased up to 1.91 times($0.468mA{\cdot}cm^{-2}$) than the catalyst without surface modification (GOx/PEI/CNT), and high maxium power density of $1.79mA{\cdot}cm^{-2}$ was gained.

Copy Paper as a Platform for Low-cost Sensitive Glucose Sensing

  • Ye Lin Kim;Young-Mog Kim;Junghwan Oh;Joong Ho Shin
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.16-21
    • /
    • 2023
  • This study reports the potential of using commercial copy papers as substrates for simple sensitive glucose detection. Typical paper-based devices use filter papers as porous substrates that can contain reagents; however, this is the first study to report the use of copy papers for the purpose of enhancing enzymatic colorimetric detection. Glucose detection using glucose oxidase, horseradish peroxidase and potassium iodide was performed on a copy paper, cellulose-based filter paper, and polyethylene film. The results indicated that the copy paper exhibited a stronger coloration than the other substrates. Reagents required for detection were dried on the copy paper, and a 3D-printed holder was designed to provide an environment for consistent imaging, making it a convenient cost-effective option for point-of-care testing using a mobile phone camera. The simple paper-based glucose sensor exhibited a linear range of 0.1-20 mM, limit of quantification of 0.477 mM, and limit of detection of 0.143 mM.

Studies on the Isolation of Cholesterol Oxidase Producing Soil Microorganism and the Culture Condition for the roduction of High Activity Cholesterol Oxidase (Cholesterol Oxidase를 생성하는 토양 미생물의 분리 및 효소 생산에 관한 연구)

  • 이인애;최용경;이홍수;최인성;정태화
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.4
    • /
    • pp.395-400
    • /
    • 1992
  • A novel strain of HSL613 producing a large amount of cholesterol oxidase as an extra~ cellular enzyme was isolated from soil samples. Experiments were carried out to optimize the condition of cholesterol oxidase production using HSL613 strain. This microorganism was shown to give the maximum yield f)f cholesterol oxidase in the medium containing 2% glucose, 2% yeast extract, 0.2% $K_2HP0_4$, 0.1% NaCl. 0.005% $CaCl_22H_2O, 0.001% $FeSO_47H_20$. The optimum temperature was $30^{\circ}C$ and the enzyme production reached a maximum level at 144 hours of cultivation (10.3$\mu$/ml).

  • PDF

Enzyme-Conjugated CdSe/ZnS Quantum Dot Biosensors for Glucose Detection

  • Kim, Gang-Il;Sung, Yun-Mo
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.44-49
    • /
    • 2009
  • Conjugated nanocrystals using CdSe/ZnS core/shell nanocrystal quantum dots modified by organic linkers and glucose oxidase (GOx) were prepared for use as biosensors. The trioctylphophine oxide (TOPO)-capped QDs were first modified to give them water-solubility by terminal carboxyl groups that were bonded to the amino groups of GOx through an EDC/NHS coupling reaction. As the glucose concentration increased, the photoluminescence intensity was enhanced linearly due to the electron transfer during the enzymatic reaction. The UV-visible spectra of the as-prepared QDs are identical to that of QDs-MAA. This shows that these QDs do not become agglomerated during ligand exchanges. A photoluminescence (PL) spectroscopic study showed that the PL intensity of the QDs-GOx bioconjugates was increased in the presence of glucose. These glucose sensors showed linearity up to approximately 15 mM and became gradually saturated above 15 mM because the excess glucose did not affect the enzymatic oxidation reaction past that amount. These biosensors show highly sensitive variation in terms of their photoluminescence depending on the glucose concentration.

Effect of Maillard Reaction Products on Inhibition of Burdock Polyphenol Oxidase and Their Antioxidant Activities

  • Kim, GyeYeong;Choi, Heesun;Park, Inshik
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.5
    • /
    • pp.853-859
    • /
    • 2017
  • This study was conducted in an effort to investigate the effect of Maillard reaction products (MRPs) on enzymatic browning of burdock and their anti-oxidant activity. The MRPs were prepared by heating glucose and amino acids at $90^{\circ}C$, which served to produce a strong inhibitory effect on burdock polyphenol oxidase. As the reaction time of the solution containing glucose and amino acid increased at $90^{\circ}C$, the production of MRPs increased and intensity of the brown color deepened. When MRPs were prepared by heating at $90^{\circ}C$ for five hours, the absorbance of MRPs from glucose and lysine was 6.44, while those of glucose and glycine was 1.95. The MRPs synthesized from the glucose and lysine also reduced the pH of MRPs from 5.60 to 4.51, but those from glucose and glycine decreased slightly from 5.57 to 5.33. The Michealis-Menten constant value ($K_m$) of burdock PPO with pyrocatechol as a substrate was 16.0 mM, and MRPs were a non-competitive inhibitor against burdock PPO. The anti-oxidant activity of MRPs was measured by evaluating its radical scavenging activities of DPPH radicals, ABTS radicals and reducing power. The color intensity of MRPs produced by lysine and glucose were deeper than that produced by glucose and glycine. It was also found that MRPs produced from glucose and lysine exhibited stronger anti-oxidant properties than those produced by glucose and glycine.

Determination of Glucose in Whole Blood by Chemiluminescence Method (화학발광법에 의한 전혈 중의 당 정량)

  • Lee, Sang Hak;Choi, Sang Seob
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.3
    • /
    • pp.223-229
    • /
    • 2001
  • A method for the determination of glucose in human whole blood by chemiluminescence method using a stopped flow injection system has been studied. The method is based on the differences in the chemiluminescence intensities of luminol due to the different amounts of hydrogen peroxide produced from the glucose oxidase catalyzed reaction. The enzyme reactor was prepared by immobilization of glucose oxidase on aminopropyl glass beads and the chemiluminescence from a flow cell was measured by means of an optical fiber bundle. In order to obtain the optimum experimental conditions, effects of pH for the chemiluminogenic solution and enzyme reactor, flow rate and temperature on the chemiluminescence intensity were investigated. The calibration curve obtained under optimum experimental conditions was linear over the range from $1.0{\times}10^{-1}$ mM to 7.0 mM and the detection limit was $6.0{\times}10^{-2}$ mM. The proposed method was applied to the determination of glucose in whole human blood sample and the results were compared with those obtained by an official method. The present method was also evaluated by the results of recovery experiments.

  • PDF

Characteristics of Bread-making and Quality of Rice Bread with Different Percentages of Dietary Fiber, Enzymes and Egg (식이섬유, 효소 및 달걀 첨가 수준에 따른 쌀빵의 제빵 적성 및 품질 특성)

  • Kim, Sang Sook;Chung, Hae Young
    • Journal of the Korean Society of Food Culture
    • /
    • v.33 no.6
    • /
    • pp.580-587
    • /
    • 2018
  • The baking properties of rice bread with polydextrose (3, 6, and 9%), enzymes (0.006, 0.009, and 0.018%) and egg (1.32 and 2.64%) were investigated. The specific gravity and color (L, a, b) of the dough, as well as the appearance, color (L, a, b) and texture of the rice bread were analyzed. The springiness, chewiness, gumminess (p<0.01) and hardness (p<0.001) of the rice bread tended to increase as the amount of added polydextrose increased. Replacement of rice flour with hemicellulase, glucose oxidase and fungal amylase are effective for producing rice bread. Replacement of rice flour with 0.009% glucose oxidase and 0.006% fungal amylase had a significant effect on increasing the volume and decreasing the hardness of the rice bread (p<0.001). Replacement of rice flour with 1.32% egg white also had a significant effect on increasing the volume and decreasing the hardness of the rice bread (p<0.001). These results suggest that replacement of rice flour with 0.009% glucose oxidase and 0.006% fungal amylase, and 1.32% egg white are effective for producing rice bread with good volume and hardness.

Effects of Chilbokyeumgamibang(七福飮加味方) on the Cerebral Cortex Neuron injured by Glucose Oxidase (칠복음가미방(七福飮加味方)이 Glucose Oxidase에 의해 손상(損傷)된 대뇌피질(大腦皮質) 신경세포(神經細胞)에 미치는 영향(影響))

  • Choi Kong-Han;Gang Hyeong-Won;Lyu Yeoung-Su
    • Journal of Oriental Neuropsychiatry
    • /
    • v.10 no.1
    • /
    • pp.53-78
    • /
    • 1999
  • As the average life span have been lengthened and the rate of senile population have been raised, chronic degenerative diseases incident to aging has been increased rapidly and become a social problem. With this social background, recently, the facts that oxygen radicals(OR) have toxic effects on Central Nervous System and Peripheral Nervous System and cause neuropathy such as Parkinson's Disease, Alzheimer Disease have been turned out, and accordingly lots of studies on the mechanism of the toxic effects of OR on nerves, the diseases caused by OR and the approaches to curing the diseases have been made. The purpose of this study is to examine the toxic effects caused by Glucose Oxidase(GO) and the effects of herbal extracts such as Chilbokyeum(CBY), Chilbokyeumga Acori Rhizoma(CAR), Acori Rhizoma(AR) on the treatment of the toxic effects. For this purpose, experiments with the cultured cell from the cerebrums of new born mice were done. The results of these experiments were as follows. 1. GO, a oxygen radical, decreased the survival rate of the cultured cells on NR assay, MTT assay and amount of neurofilaments and increased the amount of total protein, lipid peroxidation and the amount of LDH. 2. CBY have efficacy of increasing the amount of neurofilaments and total protein and decreasing lipid peroxidation and the amount of LDH. 3. CAR have efficacy of increasing the amount of neurofilaments and total protein and decreasing lipid peroxidation and the amount of LDH. 4. AR have efficacy of increasing the amount of neurofilaments and total protein. From the above results, It is concluded that Chilbokyeumgamibang has marked efficacy as a treatment for the damages caused in the GO-mediated oxidative process. And Chilbokyeumgamibang is thought to have certain pharmacological effects on controlling over aging and treating Dementia. Further clinical study of this pharmacological effects of Chilbokyeumgamibang should be complemented.

  • PDF

Determination of Glucose Using Enzyme Immobilized Membrane (효소 고정화 막을 이용한 Glucose의 정량)

  • Kim, Im Ok;Kwak, Kyeong Do;Ha, Youn Shick;Kwon, Hyo Shik;Seo, Moo Lyong
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.3
    • /
    • pp.264-270
    • /
    • 1999
  • Enzyme electrodes for amperometric measurement of glucose were prepared by immobilization of glucose oxidase on an Immobilon-AV Affinity membrane and attachement to a Pt electrodes. The electrochemical oxidation of Hz02 was monitored at +0.8V vs. Ag/AgCl. Response was linear from 0.2 mM to 20mM. The detection limit was 10m3 mM. Response time, the optimum pH and life time of enzyme immobilized membrane was 12 seconds, pH 5.5(CH3COONaJCH3COOH) and about 27 days, respectively. When the enzyme electrode was applied for the determinaion of glucose with amperometric method, other physiolosical materials have not interfered. Also, we compared the result with that from AOAC(Association of Offical Analytical Chemists) method, measuring the glucose in sweet potato. The relative error was 0.1%.

  • PDF