• Title/Summary/Keyword: glucose homeostasis

Search Result 191, Processing Time 0.027 seconds

The Effects of Long-Term, Low-Level Exposure to Monocyclic Aromatic Hydrocarbons on Worker's Insulin Resistance

  • Won, Yong-Lim;Ko, Yong;Heo, Kyung-Hwa;Ko, Kyung-Sun;Lee, Mi-Young;Kim, Ki-Woong
    • Safety and Health at Work
    • /
    • v.2 no.4
    • /
    • pp.365-374
    • /
    • 2011
  • Objectives: This study was designed to investigate whether long-term, low-level exposure to monocyclic aromatic hydrocarbons (MAHs) induced insulin resistance. Methods: The subjects were 110 male workers who were occupationally exposed to styrene, toluene, and xylene. One hundred and ten age-matched male workers who had never been occupationally exposed to organic solvents were selected as a control group. Cytokines, which have played a key role in the pathogenesis of insulin resistance, and oxidative stress indices were measured. Assessment of exposure to MAHs was performed by measuring their ambient levels and their urinary metabolites in exposed workers, and the resulting parameters between the exposed group and non-exposed control groups were compared. Results: There was no significant difference in general characteristics and anthropometric parameters between the two groups; however, total cholesterol, fasting glucose, fasting insulin, and homeostasis model assessment of insulin resistance levels were significantly higher in the exposed group. Phenylglyoxylic acid levels showed significant association with tumor necrosis factor-${\alpha}$, total oxidative status, and oxidative stress index via multiple linear regression analysis. Further, there was a negative correlation between methylhippuric acid levels and total anti-oxidative capacity, and there was a significant relationship between MAHs exposure and fasting glucose levels, as found by multiple logistic regression analysis (odds ratio = 3.95, 95% confidence interval = 1.074-14.530). Conclusion: This study indicated that MAHs increase fasting glucose level and insulin resistance. Furthermore, these results suggested that absorbing the organic solvent itself and active metabolic intermediates can increase oxidative stress and cytokine levels, resulting in the changes in glucose metabolism and the induction of insulin resistance.

Artemisia annua L. Extracts Improved Insulin Resistance via Changing Adiponectin, Leptin and Resistin Production in HFD/STZ Diabetic Mice

  • Ghanbari, Mahshid;Lamuki, Mohammad Shokrzadeh;Habibi, Emran;Sadeghimahalli, Forouzan
    • Journal of Pharmacopuncture
    • /
    • v.25 no.2
    • /
    • pp.130-137
    • /
    • 2022
  • Objectives: Insulin resistance (IR) is major cause of type 2 diabetes (T2D), and adipokines (e.g., adiponectin, leptin, and resistin) play an important role in insulin sensitivity. Medicinal plants are frequently used for T2D treatment. This study investigates the effect of Artemisia annua L. (AA) extracts on adipokines in mice with high-fat-diet (HFD)/streptozotocin (STZ)-induced T2D. Methods: We divided 60 mice into 12 groups (n = 5 per group): control, untreated T2D, treated T2D, and 9 other groups. T2D was induced in all groups, except controls, by 8 weeks of HFD and STZ injection. The treated T2D group was administered 250 mg/kg of metformin (MTF), while the nine other groups were treated with 100, 200, and 400 mg/kg of hot-water extract (HWE), cold-water extract (CWE), and alcoholic extract (ALE) of AA (daily oral gavage) along with 250 mg/kg of MTF for 4 weeks. The intraperitoneal glucose tolerance test (IPGTT) was performed, and the homeostasis model assessment of adiponectin (HOMA-AD) index and blood glucose and serum insulin, leptin, adiponectin, and resistin levels were measured. Results: Similar to MTF, all three types of AA extracts (HWEs, CWEs, and ALEs) significantly (p < 0.0001) decreased the area under the curve (AUC) of glucose during the IPGTT, the HOMA-AD index, blood glucose levels, and serum insulin, leptin, and resistin levels and increased serum adiponectin levels in the MTF group compared to the T2D group (p < 0.0001). The HWEs affected adipokine release, while the CWEs and ALEs decreased leptin and resistin production. Conclusion: Water and alcoholic AA extracts have an antihyperglycemic and antihyperinsulinemic effect on HFD/STZ diabetic mice. In addition, they decrease IR by reducing leptin and resistin production and increasing adiponectin secretion from adipocytes.

Subcritical water extraction of Gracilaria chorda abbreviates lipid accumulation and obesity-induced inflammation

  • Laxmi Sen Thakuri;Chul Min Park;Jin Woo Park;Hyeon-A Kim;Dong Young Rhyu
    • ALGAE
    • /
    • v.38 no.1
    • /
    • pp.81-92
    • /
    • 2023
  • Obesity-induced inflammation is crucial in the pathogenesis of insulin resistance and type 2 diabetes. In this study, we investigated the effects of the Gracilaria chorda (GC) on lipid accumulation and obesity-induced inflammatory changes or glucose homeostasis in cell models (3T3-L1 adipocytes and RAW 264.7 macrophages). Samples of GC were extracted using solvents (water, methanol, and ethanol) and subcritical water (SW) at different temperatures (90, 150, and 210℃). The total phenolic content of GCSW extract at 210℃ (GCSW210) showed the highest content compared to others, and GCSW210 highly inhibited lipid accumulation and significantly reduced gene expressions of peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding protein-α, sterol regulatory element-binding protein-1c, and fatty acid synthase in 3T3-L1 adipocytes. In addition, GCSW210 effectively downregulated the pro-inflammatory cytokine regulator pathways in RAW 264.7 macrophages, including mitogen-activated protein kinase, signal transducers and activators of transcription and nuclear factor-κB. In co-culture of 3T3-L1 adipocytes and RAW 264.7 macrophages, GCSW210 significantly reduced nitric oxide production and interleukin-6 levels, and improved glucose uptake with dose-dependent manner. These findings suggest that GCSW210 improves glucose metabolism by attenuating obesity-induced inflammation in adipocytes, which may be used as a possible treatment option for managing obesity and associated metabolic disorders.

The clinical physiopathological changes by induction of hypothermia in rabbits (토끼에서 저체온증의 유발에 의한 생리학적 및 임상병리학적 변화)

  • Lee, Byeong-han;Han, Jin-soo;Chung, Byung-hyun
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.4
    • /
    • pp.867-881
    • /
    • 1998
  • The studies were carried out to investigate the phygiological changes in deep hypothermia in rabbits. Sixty rabbits were continuously cooled with femoral arterio-venous bypass circulation to rectal temperatures of $34.0{\pm}0.3^{\circ}C$(mild hypothermia), $30.0{\pm}0.3^{\circ}C$(moderate hypothermia), and $25.0{\pm}0.3^{\circ}C$(deep hypothermia). The results obtained in these experiments were summarized as follows : In mild, moderate, and deep hypothermia, MAP, HR, RR, pH, $pCO_2$, $pO_2$, $Na^+$, $K^+$, HCT, PLT, glucose, L-lactate, BUN, and creatinine were analyzed. During hypothermia, a statistically significant decrease of MAP occurred between $30^{\circ}C$ and early $25^{\circ}C$(Start) of rectal temperature while significant increases occurred between baseline($38.7^{\circ}C$) and $30^{\circ}C$. Significant decreases of HR and RR were observed in the rabbits, particularly those changes appeared to similar patterns in proportion to hypothermia. Significant decreases of pH occurred between $34^{\circ}C$ and $25^{\circ}C$, and significant increases of $pO_2$ and $pCO_2$ were observed continuously in the hypothermic rabbits. The hypothermia had no significant effect on blood $Na^+$ and serum creatinine. Blood $K^+$ significantly decreased from $3.1{\pm}0.5$(baseline) to $2.6{\pm}0.6mmol/l$($34^{\circ}C$) with the hypothermia for about 30 minutes, and significantly increased from $2.4{\pm}0.6$($25^{\circ}C$(S)) to $2.7{\pm}0.5mmol/l$($25^{\circ}C$(E)) with the hypothermia for 2 hrs. HCT significantly increased to $34^{\circ}C$, thereafter, continuously increased to $25^{\circ}C$(Start, End). PLT increased to $34^{\circ}C$, thereafter, continuously decreased to $25^{\circ}C$(Start, End). Also PLT decreased significantly from 414.3($30^{\circ}C$) to $308.8{\times}103/mm^3$($25^{\circ}C$, Start). Significant increases of blood glucose and L-lactate occurred between $30^{\circ}C$ and $25^{\circ}C$ (Start, End). Slight increase of serum BUN continuously appeared with the hypothermia. These results, such as characteristic changes of the significant decrease of pH and PLT at $34^{\circ}C$, the significant decrease of MAP at $30^{\circ}C$, and the significant increase of glucose and l-lactate at $30^{\circ}C$, suggest that homeostasis of rabbits to hypothermia rapidly decreases at $34{\sim}30^{\circ}C$ of rectal temperature. Therefore, we suggest that, during the period with the rapidly decreased homeostasis, the very carefully control and treatment need to recover hypothermic animals under the circumstances of the various hypothermic experiments and emergency medicine.

  • PDF

Modulation of the Somatotropic Axis in Periparturient Dairy Cows

  • Kim, Jin Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.1
    • /
    • pp.147-154
    • /
    • 2014
  • This review focuses on modulation of growth hormone (GH) and its downstream actions on periparturient dairy cows undergoing physiological and metabolic adaptations. During the periparturient period, cows experience a negative energy balance implicating that the feed intake does not meet the total energy demand for the onset of lactation. To regulate this metabolic condition, key hormones of somatotropic axis such as GH, IGF-I and insulin must coordinate adaptations required for the preservation of metabolic homeostasis. The hepatic GHR1A transcript and GHR protein are reduced at parturition, but recovers on postpartum. However, plasma IGF-I concentration remains low even though hepatic abundance of the GHR and IGF-I mRNA return to pre-calving value. This might be caused by alternation in IGFBPs and ALS genes, which consequently affect the plasma IGF-I stability. Plasma insulin level declines in a parallel manner with the decrease in plasma IGF-I after parturition. Increased GH stimulates the lipolytic effects and hepatic glucose synthesis to meet the energy requirement for mammary lactose synthesis, suggesting that GH antagonizes insulin-dependent glucose uptake and attenuates insulin action to decrease gluconeogenesis.

Ceramide and Sphingosine 1-Phosphate in Liver Diseases

  • Park, Woo-Jae;Song, Jae-Hwi;Kim, Goon-Tae;Park, Tae-Sik
    • Molecules and Cells
    • /
    • v.43 no.5
    • /
    • pp.419-430
    • /
    • 2020
  • The liver is an important organ in the regulation of glucose and lipid metabolism. It is responsible for systemic energy homeostasis. When energy need exceeds the storage capacity in the liver, fatty acids are shunted into nonoxidative sphingolipid biosynthesis, which increases the level of cellular ceramides. Accumulation of ceramides alters substrate utilization from glucose to lipids, activates triglyceride storage, and results in the development of both insulin resistance and hepatosteatosis, increasing the likelihood of major metabolic diseases. Another sphingolipid metabolite, sphingosine 1-phosphate (S1P) is a bioactive signaling molecule that acts via S1P-specific G protein coupled receptors. It regulates many cellular and physiological events. Since an increase in plasma S1P is associated with obesity, it seems reasonable that recent studies have provided evidence that S1P is linked to lipid pathophysiology, including hepatosteatosis and fibrosis. Herein, we review recent findings on ceramides and S1P in obesity-mediated liver diseases and the therapeutic potential of these sphingolipid metabolites.

Quantitative and Comparative Analysis of Urinary Steroid Levels upon Treatment of an Anti-Diabetic Drug, CKD-501 using Gas Chromatography-Mass Spectrometry

  • Sadanala, Krishna Chaitanya;Jung, Byung-Hwa;Jang, In-Jin;Chung, Bong-Chul
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.1
    • /
    • pp.37-43
    • /
    • 2011
  • Urinary steroid levels were investigated in the treatment of CKD-501, a new anti-diabetic drug candidate. CKD-501 was administered orally at the dosage of 1, 2, 4 mg/day for 7 days to normal men (n=18). Urine was collected before, during and after stopping the drug administration and the urinary level of androgen, estrogen, progestin and corticoids were quantified using GC-MS (gas chromatography-mass spectrometry). Only urinary corticosteroid and an androgen, DHEA levels among all the analyzed steroids, have been found to increase progressively, reaching significant levels on the last day of drug treatment and later declined after the drug treatment is withdrawn. Therefore, it was thought that an increase in the urinary corticoid and DHEA levels could be a characteristic of CKD-501, since it prominently acts on the glucose sensitivity and suppresses the triglyceride levels. In conclusion, it was found that CKD-501, an anti-diabetic drug candidate, affects the glucocorticoid and DHEA levels and it plays a crucial role in glucose homeostasis.

Osmoregulation and mRNA Expression of a Heat Shock Protein 68 and Glucose-regulated Protein 78 in the Pacific oyster Crassostrea gigas in Response to Salinity Changes

  • Jo, Pil-Gue;Choi, Yong-Ki;An, Kwang-Wook;Choi, Cheol-Young
    • Journal of Aquaculture
    • /
    • v.20 no.4
    • /
    • pp.205-211
    • /
    • 2007
  • Stress-inducible proteins may function in part as molecular chaperones, protecting cells from damage due to various stresses and helping to maintain homeostasis. We examined the mRNA expression patterns of a 68-kDa heat shock protein (HSP68) and 78-kDa glucose-regulated protein (GRP78) in relation to physiological changes in Pacific oyster Crassostrea gigas under osmotic stress. Expression of HSP68 and GRP78 mRNA in the gill significantly increased until 48 h in a hypersaline environment (HRE) and 72 h in a hyposaline environment (HOE), and then decreased. Osmolality and the concentrations of $Na^+$, $Cl^-$, and $Ca^{2+}$ in the hemolymph of HRE oysters significantly increased until 72 h (the highest value) and then gradually decreased; in HOE oysters, these values significantly decreased until 72 h (the lowest value), and then increased. These results suggest that osmolality and $Na^+$, $Cl^-$, and $Ca^{2+}$ concentrations were stabilized by HSP68 and GRP78, and indicate that these two stress-induced proteins play an important role in regulating the metabolism and protecting the cells of the Pacific oysters exposed to salinity changes.

Biochemical Characterization of Glucose-Regulated Proteins, Grp94 and Grp78/BiP (Grp78/BiP과 Grp94의 생화학적 분석)

  • 강호성;김정락
    • The Korean Journal of Zoology
    • /
    • v.38 no.2
    • /
    • pp.167-176
    • /
    • 1995
  • Glucose-regulated proteins (grp's), srp94 3nd grp78/BiP, are a group of stress proteins which are highly synthesized in cells exposed to a variety of stressful agents including tunicamycin 3nd Ca2+ ionophore. Grp78/BiP is hon to function as a molecular chaperone which regulates the folding and assembly of secretory or membrane proteins, but the biological function of grp941 remains to be elucidated. In this study, we have examined the intracellular distribution of grV's and the function of srp94. Grp's are resident in the endoplasmic reticulum (ERI 3nd a specific sequence (Lys-Asp-Glu-Leu) at their C-terminus is known to be responsible for their retention within the ER. However, it has been unclear whether upon disturbance of cellular Caa+ homeostasis by the Ca2+ ionophore, grp94 is retained within the ER or secreted into the medium. In this study, we showed that in the presence of C3a+ ionophore, grp94 and gif78/BiP are present in the cells, mainly within the ER. We have also investigated whether grp94 might function as a molecular chaperone. Here we showed that in the immunoglobulin (Ig)-secreting hvbridom3 cells, grp94 transientlY interacts with fully glycosylated Is heavy chain, suggesting that grpg94 may be involved in facilitating the folding and assembly of Ig heavy chains.

  • PDF

Flavonoids Fraction of Mespilus Germanica Alleviates Insulin Resistance in Metabolic Syndrome Model of Ovariectomized Rats via Reduction in Tumor Necrosis Factor-α

  • Kouhestani, Somayeh;Zare, Samad;Babaei, Parvin
    • Journal of Menopausal Medicine
    • /
    • v.24 no.3
    • /
    • pp.169-175
    • /
    • 2018
  • Objectives: The rate of metabolic syndrome (MetS) in women diagnosed as they age is one of the main concerns of health cares. Recently new strategies used to prevent progressions of MetS toward the diagnosis of diabetes have focused on plant flavonoids. This study was aimed to investigate the beneficial effects of flavonoids fraction of Mespilus germanica leaves (MGL) on MetS in ovariectomized (OVX) rats. Methods: Twenty-four adult female Wistar rats, weighing 200 to 250 g, were divided into 3 groups: Sham surgery, OVX + Salin, or OVX + Flavonoid. Three weeks after ovariectomy, animals displayed MetS criteria received flavonoid injection (10 mg/kg, intraperitoneally) for 21 days. Then the body weight, body mass index, waist circumference, visceral fat, fasting blood glucose, serum insulin, lipid profiles and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) were measured. Results: Treatment with flavonoids fraction of MGL significantly decreased serum level of insulin (P = 0.011), glucose (P = 0.024), $TNF-{\alpha}$ (P = 0.010), also MetS Z score (P = 0.020) and homeostasis model assessment of insulin resistance (P = 0.007). Lipid profiles and visceral fat showed insignificant reduction. Conclusions: Flavonoids of MGL attenuates some of the MetS components possibly via reduction in $TNF-{\alpha}$ inflammatory cytokine.