• Title/Summary/Keyword: glucopyranosyl

Search Result 219, Processing Time 0.022 seconds

Studies on the Saponins in the Shoot of Aralia Elata (II) -Identification of the Saponins- (두릅나무 순의 Saponin에 관한 연구 (II) - Saponin 의 동정 -)

  • Kim, Young-Hee;Lee, Mee-Kyoung;Lee, Mahn-Jung
    • Journal of the Korean Society of Food Culture
    • /
    • v.5 no.2
    • /
    • pp.243-251
    • /
    • 1990
  • We determined the structure of main saponin which extracted from the shoot of Aralia Elata. The results were as follows. 1. The main aglycons and suger of the total saponins of Nr2 sample were identified as oleanolic acid and hederagenin, and glucose, arabinose and rhamnose. A probable new aglycon was isolated and inferred as 1, 3-methylenedioxy-3-dehydroxyoleanolic acid. 2. One compound of Fh saponin (named as Elatoside $Fh_2$) which was obtained first in this species was elucidated as 3-O-$({\alpha}-L-arabinopyranosyl(1{\rightarrow}2)-{\beta}-D-gluco-pyranosyl)$-28-O-${\beta}-D-glucophyranosyl$ oleanolic acid on the basis of chemical and spectral evidence of IR, $^1H$, $^{13}C-NMR$ and MS.

  • PDF

Four New Acetylated Ginsenosides from Processed Ginseng(Sun Ginseng)

  • Park, Il-Ho;Han, Sang-Beom;Kim, Jong-Moon;Piao, Longzhu;Kwon, Sung-Won;Kim, Na-Young;Kang, Tak-Lim;Park, Man-Ki;Park, Jeong-Hill
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.837-841
    • /
    • 2002
  • Four new acetylated ginsenosides were isolated from the processed ginseng (SG, sun ginseng). Their structures were determined to be $3{\beta},{\;}12{\beta}-dihydroxydammar-20(22),24-diene-3-O-{\beta}-D-glucopyranosyl(1{\rightarrow}2)-{\beta}-D-6"-O-acetylglucopyranoside;{\;}3{\beta},12{\beta}-dihydroxydammar-20(21),{\;}24-diene-3-O-{\beta}-D-glucopyranosyl(1{\rightarrow}2)-{\beta}-D-6"-O-acetylglucopyranoside;{\;}3{\beta},{\;}6{\alpha},12{\beta}-trihydroxydammar-20(22),24-diene-6-O-{\beta}-D-6'-O-acetylglucopyranoside{\;}and{\;}3{\beta},6{\alpha},12{\beta}-trihydroxydammar-20(21),24-diene-6-O-{\beta}-D-6'-O-acetylglucopyranoside$ based on spectroscopic evidences. The compounds were named ginsenoside $Rs_4,{\;}Rs_5,{\;}RS_6{\;}and{\;}Rs_7$, respectively.pectively.

C-Flavonoidal Glycosides from Erythrina caffra Flowers

  • El-Masry, Sawsan;Hammoda, Hala M.;Radwan, Mohamed M.;Ross, Samir A.;Zaatout, Hala H.
    • Natural Product Sciences
    • /
    • v.16 no.4
    • /
    • pp.217-222
    • /
    • 2010
  • A phytochemical investigation of the ethanolic extract of Erythrina caffra flowers from an Egyptian origin yielded three C-flavonoidal glycosides; 5,7,4'-trihydroxyflavone-8-C-$\beta$-D-glucopyranoside (vitexin) (1), 5,7,4'-trihydroxyflavone-6-C-$\beta$-D-glucopyranosyl-(1 $\rightarrow$ 2)-$\beta$-D-glucopyranoside (isovitexin-2"-$\beta$-D-glucopyranoside) (2), 5, 7, 4'-trihydroxyflavone-6, 8-di-C-$\beta$-D-glucopyranoside (vicenin-2) (3) and one O-flavonoidal glycoside; kaempferol-3-O-$\beta$-D.glucopyranosyl) (1 $\rightarrow$ 2)-$\beta$-D-glucopyranoside (4). The structures of the isolated compounds (1 - 4) were elucidated using different spectral techniques (UV, 1D and 2D NMR and HRESIMS). This is the first report for the isolation of flavonoidal glycosides from Erythrina caffra. The antibacterial, antifungal, antimalarial, and antileishmanial activities of the isolates were evaluated. In addition, the cytotoxic activity of the ethanolic extract and the main fractions were tested using brine shrimp bioassay.

Isolation of a Cerebroside from Panax notoginseng (삼칠근(Panax notoginseng)으로부터 Cerebroside의 분리)

  • Cho, Min-Jung;Lee, So-Young;Kim, Ju-Sun;Lee, Je-Hyun;Choi, Hwan-Soo;Lee, Ho-Young;Ha, Hye-Kyung;Kim, Chung-Sook;Kang, Sam-Sik
    • Korean Journal of Pharmacognosy
    • /
    • v.37 no.2 s.145
    • /
    • pp.81-84
    • /
    • 2006
  • A mixture of cerebrosid was purified from the roots of Panax notogiseng (Araliaceae) and characterized as 1-O-{\beta}-D-glucopyranosyl-(2S,3S,4R,8E)-2-[(2'R)-2‘-hydroxypalmitoylamino]-8-octadecene-1,3,4-triol (Aralia cerebroside) and its 8Z-isomer (1-O-{\beta}-D-glucopyranosyl-(2S,3S,4R,8E)-2-[(2'R)-2’-hydroxypalmitoylamino]-8-octadecene-1,3,4-triol, a major component of poke-weed cerebroside) by means of spectroscopic methods.

Isolation and Structural Characterization of an Oligosaccharide Produced by Bacillus subtilis in a Maltose-Containing Medium

  • Shin, Kwang-Soon
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.2
    • /
    • pp.124-131
    • /
    • 2016
  • Among 116 bacterial strains isolated from Korean fermented foods, one strain (SS-76) was selected for producing new oligosaccharides in a basal medium containing maltose as the sole source of carbon. Upon morphological characterization using scanning electron microscopy, the cells of strain SS-76 appeared rod-shaped; subsequent 16S rRNA gene sequence analysis revealed that strain SS-76 was phylogenetically close to Bacillus subtilis. The main oligosaccharide fraction B extracted from the culture supernatant of B. subtilis SS-76 was purified by high performance liquid chromatography. Subsequent structural analysis revealed that this oligosaccharide consisted only of glucose, and methylation analysis indicated similar proportions of glucopyranosides in the 6-linkage, 4-linkage, and non-reducing terminal positions. Matrix-assisted laser-induced/ionization time-of-flight/mass spectrometry and electrospray ionization-based liquid chromatography-mass spectrometry/mass spectrometry analyses suggested that this oligosaccharide consisted of a trisaccharide unit with 1,6- and 1,4-glycosidic linkages. The anomeric signals in the $^1H$-nuclear magnetic resonance spectrum corresponded to ${\alpha}$-anomeric configurations, and the trisaccharide was finally identified as panose (${\alpha}$-D-glucopyranosyl-1,6-${\alpha}$-D-glucopyranosyl-1,4-D-glucose). These results suggest that B. subtilis SS-76 converts maltose into panose; strain SS-76 may thus find industrial application in the production of panose.

Metabolism of Ginseng Saponins by Human Intestinal Bacteria (Park II) (사람의 장내세균에 의한 인삼 사포닌의 대사(제2보))

  • Hasegawa, Hideo;Ha, Joo-Young;Park, Se-Ho;Matumiya, Satoshi;Uchiyama, Masamori;Huh, Jae-Doo;Sung, Jong-Hwan
    • Korean Journal of Pharmacognosy
    • /
    • v.28 no.1
    • /
    • pp.35-41
    • /
    • 1997
  • Following ginsenoside-Rb1-hydrolyzing assay, strictly anaerobic bacteria were isolated from human feces and identified as Prevotella oris. The bacteria hydrolyzed ginsenoside Rb1 and Rd to $20-O-{\beta}-D-glucopyranosyl-20(S)-protopanaxadiol$ (I), ginsenoside Rb2 to $20-O-[{\alpha}-L-arabinofuranosyl (1{\rightarrow}6)-{\beta}-D-glucopyranosyl] - 20(S)-protopanaxadiol$ (ll) and ginsenoside Rc to $20-O-[{\alpha}-L-arabinofuranosyl (1{\rightarrow} 6){\beta}-D-g1ucopyranosyl]-20(S)-protopanaxadiol$ (III) like fecal microflora, but did not attack ginsenoside Re nor Rgl (Protopanaxatriol-type). Pharmacokinetic studies of ginseng saponins was also performed using specific pathogen free rats and demonstrated that the intestinal bacterial metabolites I-111, 20(S)- protopanaxatriol(IV) and 20(S)-protopanaxadiol(V) were absorbed from the intestines to $blood(0.4-5.1\;{\mu}g/ml)$ after oral administration with total saponin(1 g/kg/day).

  • PDF

Analysis of the Chemical Constituents of Agaricus brasiliensis

  • Cho, Soo-Muk;Jang, Kab-Yeul;Park, Hong-Ju;Park, Jeong-Sik
    • Mycobiology
    • /
    • v.36 no.1
    • /
    • pp.50-54
    • /
    • 2008
  • This study examined the chemical composition of A. blasiliensis and the chemical structural properties of an immuno-stimulating polysaccharide. The amino acids, free sugars, and organic acids by HPLC and fatty acids by GC were analyzed. The immuno-stimulating substance from A. blasiliensis was extracted with hot water and purified by ethanol precipitation. It underwent ion exchange chromatography on DEAE-cellulose and gel filtration on Toyopearl HW 65F. Through GP-HPLC, the substance was found to be homogeneous. Its chemical structure was determined by $^{13}C-NMR$. Fatty acids, organic acids, and sugar alcohol composition consisted exclusively of linoleic acid, fumaric acid and mannitol, respectively. The amino acids were mainly glutamic acid, glycine, and arginine. By $^{13}C-NMR$ analysis, the immuno-stimulating substance was identified as ${\beta}-(1{\rightarrow}3)\;(1{\rightarrow}6)$-glucan, composed of a backbone with $(1{\rightarrow}3)$-linked D-glucopyranosyl residues branching a $(1{\rightarrow}6)$-linked D-glucopyranosyl residue. The ${\beta}$-glucan from A. blasiliensis showed pronounced immuno-stimulating activity on the antibody-production ability of B-lymphocytes by the hemolytic suspension assay. In these results, A. blasiliensis was estimated to have potent pharmacological properties and potential nutritional values.

Some Properties and Optimal Culture Conditions of Cyclodextrin Glucanotransferase of Bacillus sp. S-6 Isolated from Kimchi (김치에서 분리한 Bacillus sp. S-6의 Cyclodextrin Glucanotransferase의 특성과 최적생산조건)

  • 전홍기;조영배;김수진;배경미
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.4
    • /
    • pp.609-617
    • /
    • 1998
  • A microorganism capable of producing high level of extracellular cyclodextrin glucanotransferase(EC 2.4.1.19 ; CGTase) was isolated from Kimchi. 2-O-$\alpha$-D-glucopyranosyl L-ascorbic acid(AA-2G) was synthesized by transglycosylation reaction of CGTase using starch as a donor and L-ascorbic acid as an acceptor. The isolated strain S-6 was identified as Bacillus sp. S-6. The maximal CGTase production was observed in a medium containing 0.5% soluble starch, 1% yeast extract, 1% NaCO3, 0.1% K2HPO4, and 0.02% MgSO4 with initial pH 8.0. The strain was cultured at 37$^{\circ}C$ for 40 hr with reciprocal shaking. Using the culture supernatant as crude enzyme, the optimal pH and temperature of the CGTase activity of this strain were 7.0 and 4$0^{\circ}C$. In the effects of pH and temperature on the stability of the enzyme, the enzyme was stable in the range of pH 6.0~10.0 and up to 45$^{\circ}C$, respectively.

  • PDF

Tissue Factor Inhibitory Sesquiterpene Glycoside from Eriobotrya japonica

  • Lee, Ming-Hong;Son, Yeon-Kyoung;Han, Yong-Nam
    • Archives of Pharmacal Research
    • /
    • v.27 no.6
    • /
    • pp.619-623
    • /
    • 2004
  • Tissue factor (TF, tissue thromboplastin) is a membrane bound glycoprotein, which acceler-ates the blood clotting, activating both the intrinsic and the extrinsic pathways to serve as a cofactor for activated factor VII (Vila). The TF-factor Vila complex (TF/VIIa) proteolytically activates factors IX and X, which leads to the generation of thrombin and fibrin clots. In order to isolate TF inhibitors, by means of a bioassay-directed chromatographic separation technique, from the leaves of Eriobotrya japonica Lindley (Rosaceae), a known sesquiterpene glycoside (2) and ferulic acid (3) were isolated as inhibitors that were evaluated using a single-clotting assay method for determining TF activity. Another sesquiterpene glycoside (1) was also isolated but was inactive in the assay system. Compound 3 was yielded by alkaline hydrolysis of compound 2. The structures of compounds 1, 2, and 3 were identified by means of spectral analysis as $3-O-{\alph}-L-rhamnopyranosyl-(1{\rightarrow}4)-a-L-rhamnopyranosyl-(1{\rightarrow}2)-[{\alph}-L-rhamnopyrano-syl-(1{\rightarrow}6)]-{\beta}-D-glucopyranosyl nerolidol$ (1), $3-O-{\alph}-L-rhamnopyranosyl-(1{\rightarrow}4)-{\alph}-L-rhamnopyr-anosyl-(1{\rightarrow}2)-[{\alph}-L-(4-trans-feruloyl)-rhamnopyranosyl-(1{\rightarrow}6)]-{\beta}-D-glucopyranosyl$ nerolidol (2) and ferulic acid (3), respectively. Compounds 2 and 3 inhibited 50% of the TF activity at con-centrations of 2 and $369{\;}\mu\textrm{m}/TF$ units, respectively.

A New Monoterpene Glucoside from Portulaca oleracea

  • Seo, Young-Wan;Shin, Jong-Heon;Cha, Hyo-Jun;Kim, You-Ah;Ahn, Jong-Woong;Lee, Burm-Jong;Lee, Dong-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.10
    • /
    • pp.1475-1477
    • /
    • 2003
  • Three monoterpene glucosides (1-3), including one new compound (3), have been isolated from the methanol extract of Portulaca oleracea. Structures of these compounds were determined to be (3S)-3-O-( ${\Beta}$-Dglucopyranosyl)-3,7-dimethylocta-1,6-dien-3-ol (1), (3S)-3-O-( ${\beta}$-D-glucopyranosyl)-3,7-dimethylocta-1,5-dien-3,7-diol (2) and (3S)-3-O-( ${\beta}$-D-glucopyranosyl)-3,7-dimethyl-7-hydroperoxyocta-1,5-dien-3-ol (3), respectively, by a combination of spectral analyses. Their stereochemistries were established by measurement of NOE and vicinal proton-proton coupling constants as well as comparisons of spectral data with those of previously related compounds.