• Title/Summary/Keyword: glucagon cell

Search Result 55, Processing Time 0.019 seconds

Immunohistochemical study on the insulin-, glucagon-, somatostatin-, and pancreatic polypeptide secreting cells in Korean native goat (한국재래산양 췌장의 insulin, glucagon, somatostatin 및 pancreatic polypeptide 분비세포에 관한 면역조직화학적 연구)

  • Lee, Heungshik S.;Lee, In-se;Kang, Tae-cheon;Kim, Jin-sang;Yi, Seong-joon
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.1
    • /
    • pp.45-54
    • /
    • 1995
  • Pancreatic endocrine cells containing glucagon, insulin, somatostatin and pancreatic polypeptide were identified in the pancreas of the Korean native goat by using immunohistochemical method. Glucagon immunoreative cells were oval or fusiform in shape and located at the periphery of the pancreatic islets. Insulin immunoreactive cells were round or oval in shape and occupied throughout the pancreatic islets except the small area of the periphery. Somatostatin immunoreative cells were oval and elliptical, and mainly located at the periphery of the pancreatic islets. Some of these cells had a cytoplasmic process. Pancreatic polypeptide immunoreactive cells were elliptical or polyhedral and located at the periphery of the pancratic islets where two or more cells formed a cell cluster. The distribution rates of glucagon, insulin, somatostatin and pancreatic polypeptide immunoreactive cells were 24.4%, 44.3%, 13.2% and 18.1% respectively.

  • PDF

Immunohistochemistry of Glucagon- immunoreactive Cells in the Developing Pancreas of the Korean Native Goat (Capra hircus)

  • Sae-Kwang Ku;Hyeung-Sik Lee;Jae-Hyun Lee
    • Animal cells and systems
    • /
    • v.3 no.2
    • /
    • pp.187-191
    • /
    • 1999
  • The distribution of glucagon-immunoreactive cells in the pancreas during various developmental stages (fetus, neonate, 1-month-old, 6-month-old and adult) of the Korean native goat was investigated by immunohistochemical methods. The varying distribution and frequency of glucagon-immunoreactive cells in the pancreas of the Korean native goat were observed. The glucagon-immunoreactive cells were detected in both exocrine and endocrine portions (pancreatic islets) at all developmental stages and also in ducts of the 6-month-old and adult. The relative frequencies of glucagon-immunoreactive cells increased in the pancreatic islets and ducts with age, but decreased in the exocrine portions. Generally, they were distributed in the interacinar spaces or marginal zone of the pancreatic islets during all stages of development. However, the cell distributions of the pancreatic islets in the neonate divided into two types: 1) ones which were distributed in the inner zone, and 2) others in the peripheral zone.

  • PDF

Electron microscopic study on the insulin-, glucagon-, somatostatin-, and pancreatic polypeptide secreting cells in Korean native goat (한국재래산양 췌장의 insulin, glucagon, somatostatin 및 pancreatic polypeptide 분비세포에 관한 전자현미경적 연구)

  • Lee, Heungshik S.;Lee, In-se;Kang, Tae-cheon;Won, Moo-ho;Yi, Seong-joon
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.1
    • /
    • pp.55-65
    • /
    • 1995
  • Ultrastructures of pancreatic endocrine cells containing glucagon, insulin, somatosratin and pancreatic polypeptide were studied in the pancreas of the Korean native goat by immunohistochemical and elecron microscopy. Glucagon immunoreatctive cells were round or fusiform in shape and contained secretory granules of 200-260 nm in diameter. The secretory granules were high in electron density and had a halo between the limiting membrane and the central granule core. Insulin immunoreactive cells were round or oval in shape, and contained various sizes of secretory granules from 135 to 300 nm in diameter. The secretory granules were low or moderate electron density and had a variform halo. Somatostatin immunoreactive cells were elliptical or fusiform shape with cytoplasmic processes. They contained the secretory granules of 140-320 nm with moderate electron densities. Pancreatic polypeptide immunoreactive cells were elliptical or fusiform and contained small secretory granules with high electron densities. The secretory granules were 120-230 nm in diameter and the least in number.

  • PDF

The regional distribution and relative frequency of gastrointestinal endocrine cells of the ICR mice: An immunohistochemical study (ICR 마우스 위장관 내분비 세포의 부위별 분포 및 출현 빈도 : 면역조직화학적 연구)

  • Ham, Tae-su
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.2
    • /
    • pp.123-132
    • /
    • 2001
  • The regional distributions and relative frequencies of some gastrointestinal endocrine cells in the 8 portions (fundus, pylorus, duodenum, jejunum, ileum, cecum, colon and rectum) of the gastrointestinal tract of ICR mouse (ICR) with immunohistochemical method using 7 types of specific antisera against somatostatin, serotonin, glucagon, cholecystokinin (CCK)-8, secretin, pancreatic polypeptide (PP) and gastrin. In this study, somatostatin-, serotonin-, glucagon-, CCK-8-, secretin- and gastrin-immunoreactive (IR) cells were identified. Most of these IR cells in the intestinal portion were generally spherical or spindle in shape (open-typed cell) while cells showing round in shape (close-typed cell) were found in the stomach regions occasionally. Their relative frequencies were varied according to each portion of gastrointestinal tract. Somatostatin-IR cells were demonstrated throughout whole gastrointestinal tract except for large intestine. Serotonin-IR cells were detected throughout whole gastrointestinal tract and they were most predominant endocrine cell types in this species of mouse. Glucagon-IR cells were restricted to the fundus and rectum with moderate and a few frequencies, respectively. CCK-8-IR cells were observed in the pylorus, duodenum and ileum with numerous, moderate and rare frequencies, respectively. Secretin-IR cells were restricted to the duodenum and ileum with a few and rare frequencies, respectively. Gastrin-IR cells were restricted to the pylorus with numerous frequency. However, no PP-IR cells were found in this study. In conclusion, some peculiar distributional patterns of gastrointestinal endocrine cells were found in the ICR mouse compared to those of other mammals.

  • PDF

Immunohistochemical studies of the pancreatic endocrine cells of the various animals (각종 동물의 췌장 내분비세포의 면역조직화학적 연구)

  • Lee, Jae-hyun;Lee, Hyeung-sik
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.4
    • /
    • pp.497-510
    • /
    • 1992
  • This study was attempted to comparative investigate the types and regional distribution of the endocrine cells in several vertebrates immunohistochemically using seven antisera. From carp pancreas could be observed 4 types which are insulin-, glucagon-, som- and BPP-immunoreactive cells. Insulin-immunoreactive cells were mainly distributed at the periphery and a few cells occupied the central region of the islets. Glucagon-immunoreactive cells were distributed at the periphery of the islets, and som - and BPP-immunoreactive cells were located at the central region. From frog pancreas could be observed 4 types which are insulin-, glucagon-, som- and BPP-immunoreactive cells. Insulin-immunoreactive cells were distributed throughout the islets. Som-immunoreactive cells were distributed at the periphery of the islets, and glucagon- and BPP-immunoreactive cells were found as single cell or as small groups located between the pancreatic acini. From snake pancreas could be observed 3 types which are insulin-, glucagon- and som -immunoreactive cells. Insulin-immunoreactive cells were distributed throughout the small islets, and they also were scattered at the periphery of the large islets. Glucagon-immunoreactive cells were distributed at the periphery of the islets, whereas som-immunoreactive cells were occupied the central region. From Ogolgae pancreas could be observed 4 types which are insulin-, glucagon-, som-and BPP-immunoreactive cells. Insulin-immunoreactive cells were distributed throughout the small islets, but at the periphery of the large one. Glucagon- immunoreactive cells were distributed at the periphery of the small islets and in the large islets showed scattering entired. Som-immunoreactive cells were distributed at the periphery of the small islets and in the large islets were located at the central region. A small numbers of BPP-immunoreactive cells were located at the periphery of the small islets and the exocrine regions. From the pancreas of the Korean native goat could be observed 6 types which are insulin-, glucagon-, som-, BPP-, 5-HT- and porcine-CG-immunoreactive cells. Insulin-immunoreactive cells were distributed throughout the islets. Som-immunoreactive cells were located at the periphery of the islets, but a tew were scattered at the central region of islets and in the epithelium of the secretory duct. Glucagon-, BPP-, 5-HT- and porcine CG-immunoreactive cells were distributed at the periphery of the islets. These findings indicated that the regional distribution patterns and cell types of pancreatic endocrine cells in vertebrates varies considerably among phylogenetically different vertebrates.

  • PDF

Effects of the Protein Kinase A Inhibitor KT5720 on Glucagon-Mediated Decrease in Expression of Antioxidant Enzymes (Protein kinase A 억제제인 KT5720이 글루카곤 매개성 항산화 효소의 발현감소에 미치는 영향)

  • Oh Soo-Jin;Jo Jae-Hoon;Park Chang-Sik;Kim Sang-Kyum;Kim Bong-Hee
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.3 s.54
    • /
    • pp.245-253
    • /
    • 2006
  • We reported previously that glucagon decreased alpha- and pi-class glutathione S-transferases (GSTs) and microsomal epoxide hydrolase (mEN) protein levels in primary cultured rat hepatocytes. The present study examines the effects of Protein kinase A (PKA) inhibitor, KT5720, on the glucagon-mediated decrease in expression of GSTs and mEN. To assess cell viability. lactate dehydrogenase release and MTT activity were examined in hepatocytes treated KT5720. Cell viability was significantly decreased in a concentration dependent manner after incubation with KT5720 at the concentrations of 1 $\mu$M or above for 24 h, which was inhibited by the cytochrome P450 inhibitor SKF-525A. In contrast, another PKA inhibitor H89 (up to 25 $\mu$M) was not toxic to hepatocytes. The glucagon-mediated decrease in expression of alpha- and pi-class GSTs and mEH was completely inhibited by 25 $\mu$M H89 and attenuated by 0.1 $\mu$M KT5720. This study demonstrates that KT5720 may cause cytotoxicity in rat hepatocytes through cytochrome P450-dependent bioactivation. The present study implicates PKA in mediating the inhibitory effect of glucagon on expression of alpha- and pi- class GSTs and mEH.

Immunohistochemical study on the endocrine cells of the pig stomach (돼지 위점막의 내분비세포에 관한 면역조직화학적 연구)

  • Lee, Jae-hyun;Kim, Jeong-mi;Lee, Hyung-sik
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 1997
  • The relative frequency and distribution of occurrence of immunoreactive cells in the proventriculus, diverticulum, cardia, fundus and pylorus of the stomach of pigs were investigated by PAP method using specific antisera against BCG, Gas/CCK, 5-HT, somatostatin, glucagon, BPP, motilin and insulin. In the diverticulum and cardia, BCG-, 5-HT-, somatostatin- and glucagon-immunoreactive cells were detected. In the fundus, BCG-, 5-HT- and somatostatin-immunoreactive cells were also found. In the pylorus, BCG-, Gas/CCK-, 5-HT-, somatostatin- and glucagon-immunoreactive cells were observed. However, no BPP-, motilin- and insulin-immunoreactive cells were found in the stomach epithelium of the pigs. These results showed that the occurrence of the endocrine cells confirmed in the diverticulum as the cardia and suggest that the function of diverticulum may be similar to that of cardia in the pigs.

  • PDF

Protein-protein Interaction Analysis of Glucagon-like Peptide-2 Receptor with Its Native Ligand Glucagon-like Peptide-2

  • Nagarajan, Santhosh Kumar
    • Journal of Integrative Natural Science
    • /
    • v.10 no.3
    • /
    • pp.125-130
    • /
    • 2017
  • Glucagon like pepide-2, one of the GLPs, is involved in various metabolic functions in the gastrointestinal tract. It plays a major role in the regulation of mucosal epithelium and the intestinal crypt cell proliferation. Because of their therapeutic importance towards the diseases in the gastrointestinal tract, it becomes necessary to study their interaction with its receptor, GLP-2R. In this study, we have developed protein-protein docking complexes of GLP-2 - GLP-2 receptor. Homology models of GLP-2 are developed, and a reliable model out of the predicted models was selected after model validation. The model was bound with the receptor, to study the important interactions of the complex. This study could be useful in developing novel and potent drugs for the diseases related with GLP-2.

Immunohistochemical study on the gastro-entero-pancreatic(GEP) endocrine cells of the blue fox, Alopex lagopus (북극여우의 위장췌 내분비세포에 관한 면역조직화학적 연구)

  • Lee, Jae-hyun;Lee, Hyeung-sik
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.3
    • /
    • pp.369-379
    • /
    • 1993
  • The regional distribution and the relative frequencies of endocrine cells were studied in nine portions of the blue fox GI tract, and the distribution pattern and cell types of the pancreatic endocrine cells were also studied in the pancreas by immunohistochemical method. Six kinds of immunoreactive cells were identified in the GI tract, and four kinds of immunoreactive cells were also identified in the pancreas. Although numerous 5-HT- and somatostatin-immunoreactive cells were seen throughtout the GI tract, somatostatin-immunoreactive cells were a few in the intestine. Very numerous Gas/CCK-immunoreactive cells were restricted generally in the pyloric region and duodenum. Numerous glucagon-immunoreactive cells were found in the stomach except the pyloric region, and generally a few in the intestine. Moderate number of BPP-immunoreactive cells were found in the stomach except the pyloric region, and a few in the large intestine. Numerous porcine CG-immunoreactive cells were restricted to the cardiac and fundic region. In the pancreas, four types of pancreatic endocrine cells-somatostatin-, glucagon-, BPP- and insuline-immunoreactive-were identified in the pancreatic islet and exocrine portion. These results suggest that the regional distribution, the relative frequencies and cell types of the GEP endocrine cells in the GI tract and pancreas varies considerably among the species.

  • PDF

Immunohistochemical study on the gastro-entero-pancreatic(GEP) endocrine cells of the blue fox, Alopex lagopus (북극여우의 위장췌 내분비세포에 관한 면역조직화학적 연구)

  • Lee, Jae-hyun;Lee, Hyeung-sik
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.4
    • /
    • pp.579-589
    • /
    • 1993
  • The regional distribution and the relative frequencies of endocrine cells were studied in nine portions of the blue fox GI tract, and the distribution pattern and cell types of the pancreativc endocrine cells were also studied in the pancreas by immunohistochemical method. Six kinds of immunoreactive cells were identified in the GI tract, and four kinds of immunoreactive cells were also identified in the pancreas. Although numerous 5-HT- and somatostatin-immunoreactive cells were seen throughout the GI tract, somatostatin- immunoreactive cells were a few in the intestine. Very numerous Gas/CCK-immunoreactive cells were restricted generally in the pyloric region and duodenum. Numerous glucagon-immunoreactive cells were found in the stomach except the pyloric region, and generally a few in the intestine. Moderate number of BPP-immunoreactive cells were found in the stomach except the pyloric region, and a few in the large intestine. Numerous porcine CG-immunoreactive cells were restricted to the cardiac and fundic region. In the pancreas, four types of pancreatic endocrine cells- somatostatin-, glucagon-, BPP- and insulin-immunoreactive- were identified in the pancreatic islet and exocrine portion. These results suggest that the regional distribution, the relative frequencies and cell types of the GEP endocrine cells in the GI tract and pancreas varies considerably among the species.

  • PDF