• Title/Summary/Keyword: glow curves

Search Result 60, Processing Time 0.028 seconds

Characterization and Emission/Absorption Study of a Grimm-type Glow discharge source in the application of high frequency Glow Discharge (고주파 글로우 방전을 이용한 GRIMM형 방전원의 특성 및 방출/흡광분석법 연구)

  • Suh, Jung-Gee;Woo, Jin-Chun
    • Analytical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.155-164
    • /
    • 1994
  • A conventional Grimm-type glow discharge source was constructed and applied to radio-frequency(13.56MHz) discharge for metal and ceramic analysis. We investigated the emission spectrum for aluminium and aluminium oxide and the influence of discharge operating paramaters including argon pressure, rf-power and DC-bias voltages at the sample-side electrode. Scanning Electron Microscope(SEM) also was used to investigate the effect of rf-sputtering on the microstructure formation of the aluminium oxide. Linear analytical calibration curves were constructed for Manganese and zinc element in samples of low alloy steel(BAS 401-405) and brass(NIST 1108-1117).

  • PDF

Photostimulated Luminescence-Thermoluminescence Application to Detection of Irradiated White Ginseng Powder (방사선 조사 백삼분말의 PSL-TL 다중검지법)

  • Chung, Hyung-Wook;Delincee, Henry;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.265-270
    • /
    • 2000
  • White ginseng powder, permitted to be irradiated in Korea for the purpose of microbial decontamination, was treated with electron beam at doses of $0{\sim}15\;kGy$ for a detection trial whether it is irradiated or not by measuring photostimulated luminescence for whole samples first and then (TL) for the mineral adhering to the samples. PSL values were less than threshold value (700, $T_{1}$) and were negative for nonirradiated samples but more than 5000 $(T_2)$ and were positive for irradiated ones. After PSL measurement mineral was separated from the whole samples using density separation. Mineral of nonirradiated samples was characterized by glow curves which have low intensity and were situated at the high temperature region (about $300^{\circ}C$) by the low level of natural radioactivity. Glow curves of minerals for all irradiated samples were observed at about $200^{\circ}C$. TL ratio by normalization was 0.01 for nonirradiated sample and more than 0.78 for irradiated samples, and it was possible to detect whether white ginseng powders were irradiated or not.

  • PDF

Characteristics of the Maximum Glow Intensity According to the Thermoluminescent Phosphors used in the Absorbed Dose Measurement of the Radiation Therapy (방사선치료 선량 측정에 사용되는 열형광체에 따른 최대 형광 강도 특성)

  • Kang, Suman;Im, Inchul;Park, Cheolwoo;Lee, Mihyeon;Lee, Jaeseung
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.4
    • /
    • pp.181-187
    • /
    • 2014
  • The purpose of this study were to analyze the characteristic of the glow curves in order to the glow temperature of the thermoluminescent dosimeters (TLDs) for the absorbed dose measurement of the radiation therapy. In this study, we was used the TLDs of the LiF:Mg${\cdot}$Ti, LiF:Mg${\cdot}$Cu${\cdot}$P, $CaF_2$:Dy, $CaF_2$:Mn (Thermo Fisher Scientific Inc., USA). The source-to-solid dry phantom (RW3 slab, IBA Dosmetry, Germany) surface distance was set at 100 cm, and the exposure dose of 100 MU (monitor unit) was used 6- and 15-MV X-rays, and 6- and 12-MeV electron beams in the reference depth, respectively. After the radiations exposure, we were to analyze the glow curves by using the TL reader (Hashaw 3500, Thermo Fisher Scientific Inc., USA) at the fixed heating rate of $15^{\circ}C/sec$ from $50^{\circ}C$ to $260^{\circ}C$. The glow peaks, the trapping level in the captured electrons and holes combined with the emitted light, were discovered the two or three peak. When the definite increasing the temperature of the TLDs, the maximum glow peak representing the glow temperature was follow as; $LiF:Mg{\cdot}Ti$: $185.5{\pm}1.3^{\circ}C$, $LiF:Mg{\cdot}Ti$: $135.0{\pm}5.1^{\circ}C$, $CaF_2$:Dy: $144.0{\pm}1.6^{\circ}C$, $CaF_2$:Mn: $294.3{\pm}3.8^{\circ}C$, respectively. Because the glow emission probability of the captured electrons depend on the heating temperature after the exposure radiation, TLDs by applying the fixed heating rate, the accuracy of measurement will be able to improve within the absorbed dose measurement of the radiation therapy.

ANALYSIS OF THE LiF:Mg,Cu,Si TL AND THE LiF:Mg,Cu,P TL GLOW CURVES BY USING GENERAL APPROXIMATION PLUS MODEL

  • Chang, In-Su;Lee, Jung-Il;Kim, Jang-Lyul;Oh, Mi-Ae;Chung, Ki-Soo
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.4
    • /
    • pp.155-164
    • /
    • 2009
  • In this paper, we used computerized glow curve deconvolution (CGCD) software with several models for the simulation of a TL glow curve which was used for analysis. By using the general approximation plus model, parameters values of the glow curve were analyzed and compared with the other models parameters (general approximation, mixed order kinetics, general order kinetics). The LiF:Mg,Cu,Si and the LiF:Mg,Cu,P material were used for the glow curve analysis. And we based on figure of merits (FOM) which was the goodness of the fitting that was monitored through the value between analysis model and TLD materials. The ideal value of FOM is 0 which represents a perfect fit. The main glow peak makes the most effect of radiation dose assessment of TLD materials. The main peak of the LiF:Mg,Cu,Si materials has a intensity rate 80.76% of the whole TL glow intensity, and that of LiF:Mg,Cu,P materials has a intensity rate 68.07% of the whole TL glow intensity. The activation energy of LiF:Mg,Cu,Si was analyzed as 2.39 eV by result of the general approximation plus(GAP) model. In the case of mixed order kinetics (MOK), the activation energy was analyzed as 2.29 eV. The activation energy was analyzed as 2.38 eV by the general order kinetics (GOK) model. In the case of LiF:Mg,Cu,P TLD, the activation energy was analyzed as 2.39 eV by result of the GAP model. In the case of MOK, the activation energy was analyzed as 2.55 eV. The activation energy was analyzed as 2.51 eV by the GOK model. The R value means different ratio of retrapping-recombination. The R value of LiF:Mg,Cu,Si TLD main peak analyzed as $1.12\times10^{-6}$ and $\alpha$ value analyzed as $1.0\times10^{-3}$. The R of LiF:Mg,Cu,P TLD analyzed as $7.91\times10^{-4}$, the $\alpha$ value means different ratio of initial thermally trapped electron density-initial trapped electron density (include thermally disconnected trap electrons density). The $\alpha$ value was analyzed as $9.17\times10^{-1}$ which was the difference from LiF:Mg,Cu,Si TLD. The deep trap electron density of LiF:Mg,Cu,Si was higher than the deep trap electron density of LiF:Mg,Cu,P.

An Integrated System for Radioluminescence, Thermoluminescence and Optically Stimulated Luminescence Measurements

  • Park, Chang-Young;Park, Young-Kook;Chung, Ki-Soo;Lee, Jong-Duk;Lee, Jungil;Kim, Jang-Lyul
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.160-169
    • /
    • 2018
  • Background: This study aims to develop an integrated optical system that can simultaneously or selectively measure the signals obtained from radioluminescence (RL), thermoluminescence (TL), and optically stimulated luminescence (OSL), which are luminescence phenomena of materials stimulated by radioactivity, heat, and light, respectively. The luminescence mechanism of various materials could be investigated using the glow curves of the luminescence materials. Materials and Methods: RL/TL/OSL integrated measuring system was equipped with a X-ray tube (50 kV, $200{\mu}A$) as an ionizing radiation source to irradiate the sample. The sample substrate was used as a heating source and was also designed to optically stimulate the sample material using various light sources, such as high luminous blue light emitting diode (LED) or laser. The system measured the luminescence intensity versus the amount of irradiation/stimulation on the sample for the purpose of measuring RL, TL and OSL sequentially or by selectively combining them. Optical filters were combined to minimize the interference of the stimulation light in the OSL signal. A long-pass filter (420 nm) was used for 470 nm LED, an ultraviolet-pass filter (260-390 nm) was used for detecting the luminescence of the sample by PM tube. Results and Discussion: The reliability of the system was evaluated using the RL/OSL characteristics of $Al_2O_3:C$ and the RL/TL characteristics of LiF:Mg,Cu,Si, which were used as dosimetry materials. The RL/OSL characteristics of $Al_2O_3:C$ showed relatively linear dose-response characteristics. The glow curve of LiF:Mg,Cu,Si also showed typical RL/OSL characteristics. Conclusion: The reliability of the proposed system was verified by sequentially measuring the RL characteristics of radiation as well as the TL and OSL characteristics by concurrent thermal and optical stimulations. In this study, we developed an integrated measurement system that measures the glow curves of RL/TL/OSL using universal USB-DAQs and the control program.

A Measurement and Analysis of Thermoluminescence Spectra of LaAlO3 (LaAlO3에 대한 열자극발광 스펙트럼의 광학적 분석)

  • Lee, J.I.;Moon, J.H.;Kim, D.H.
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.4 no.2
    • /
    • pp.141-146
    • /
    • 1999
  • We measured and analyzed thermoluminescence spectra of $LaAlO_3$, single crystal by 3 dimensional data for temperature, wavelength and luminescence intensity. $LaAlO_3$, has used as the substrates of YBCO(superconductor) or semiconductors. We could determined the energy of recombination center, that is impossible through analysis of glow curve data. We could obtained the energy through analysis of the spectrum data at peak temperature by Franck-Condon model. The total glow curve was deconvoluted to three glow curves by curve fitting method. The activation energies were 0.54eV, 0.91eV and 1.02eV respectively. The energies of recombination centers were determined with 2.04eV and 2.75eV from the analysis of luminescence intensity data for wavelength.

  • PDF

The Electron Trap Analysis in Thermoluminescent LiF Crystal

  • Park, Dae-Yoon;Ko, Chung-Duck;Lee, Sang-Soo
    • Nuclear Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.214-222
    • /
    • 1972
  • In the optic,11 grade LiF crystal, the electron traps corresponding to the thermoluminescence(abbreviated to TL) glow peak develop as irradiation dose is increased. Originally the electron trap of the crystal has two levels but as the dose reaches to the order of 10$^4$rontgen, it attains five levels as observed in the TL glow curves. The five trap depths are determined from the glow peak temperatures for two different heating rates, $\theta$=6.6$^{\circ}C$/sec and 3.4$^{\circ}C$/sec. The electron trap depths have the following values E$_1$=0.79 eV, E$_2$=0.93 eV, E$_3$=1.02 eV, E$_4$=1.35 eV, E$_{5}$=1.69eV. The special feature of thermoluminescence of optical grade LiF is that the traps, except E$_1$and E$_2$corresponding to 12$0^{\circ}C$ glow peak and 15$0^{\circ}C$ glow peak for $\theta$=6.6$^{\circ}C$/sec, have severe thermal instability, namely E$_3$, E$_4$and E$_{5}$ levels disappear during bleaching process. These defects in the optical grade LiF crystal seem annealed out during the course of TL measurement. The fresh or long time unused LiF(Mg) crystal shows only two glow peaks at 17$0^{\circ}C$ and 23$0^{\circ}C$ for $\theta$=6.6$^{\circ}C$/sec, but upon sensitization with r-ray irradiation, it converts to the six glow peak state. The four electron traps, E$_1$, E$_2$, E$_3$, and E$_{6}$ created by r-ray irradiation and corresponding to the glow peaks at T=10$0^{\circ}C$ 13$0^{\circ}C$, 15$0^{\circ}C$ and 29$0^{\circ}C$ are stable and not easily annealed out thermally, The sensitization essentially required to LiF(Mg) dosimeter is to give the crystal the stable six levels in the electron trap. In optical grade LiF, the plot between logarithm of total TL output versus logarithm of r-ray dose gives more supra-linear feature than that of LiF(Mg). However, if one takes the height of 12$0^{\circ}C$ glow peak(S=6.6$^{\circ}C$/sec), instead of the total TL output, the curve becomes close to that of LiF(Mg).

  • PDF

Natural Beryl as a Thermoluminescent Dosimeter

  • Moon, P.S.
    • Nuclear Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.151-154
    • /
    • 1974
  • The possibility of using natural beryl thermoluminesence for gamma-ray dose measurement was investigated through the analysis of glow curves obtained with Co-60 gamma-ray irrediation. The natural beryl powder of 80-200 mesh has a good gamma-ray thermoluminescent response and stability at room temperature. The thermoluminescent response is linear from 10mR to 10$^3$R and can be measured up to 10$^{6}$ R.

  • PDF

Study for Conductive and Non-conductive Multi-layers Depth Profiling Analysis of Radio Frequency Gas-jet Boosted Glow Discharge Spectrometry (Modified Gas-jet Boosted Radio-frequency Glow Discharge 셀의 개발 및 최적화에 관한 연구)

  • Cho, Won Bo;Borden, Stuart;Jeong, Jong Pil;Kang, Won Kyu;Kim, Kyu Whan;Kim, Hyo Jin
    • Analytical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.108-114
    • /
    • 2002
  • The new system using a glow discharge atomic emission spectrometer for the direct analysis of solid samples has been developed and characterized. The system was consisted of new glow discharge cell improved previous gas-jet boosted nozzle and radio-frequency power supply. In the case of previous type glow discharge chamber, it had been fitted trace analysis of low alloy steel with low discharge power, because it was to decrease redeposition and increase sample weight loss. But it had a problem that plasma becomes unstale due to increased sample weight loss and redeposition resulting from the high discharge power. Because of being problem of previous glow discharge, it is impossible to analyze using high power. The modified gas-jet boosted glow discharge to solve this problem would improve to be less sample loss rate of modified nozzle than sample loss rate of previous nozzle on the equal discharge condition, and improve to increase stability of plasma. The effect of discharge parameters such as discharge pressure, gas flow rate and power on the sample loss rate, emission intensity has been studied to find optimum discharge conditions. The calibration curves of Fe were obtained with 3 low-alloy samples.

Luminescence Identification Characteristics for Irradiated Dried Fishery Products (조사처리한 건조수산품의 전처리 방법에 따른 Luminescence 판별 특성)

  • Kim, Moon-Young;Ahn, Jae-Jun;Kim, Gui-Ran;Kwak, Ji-Young;Park, Kun-Sang;Lee, Kyung-Jin;Kwon, Joong-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.11
    • /
    • pp.1837-1842
    • /
    • 2013
  • Photostimulated luminescence (PSL) and thermoluminescence (TL) analyses were conducted for the detection of different gamma-irradiated dried fishes (mussel, squid, beka squid, mitra squid, plaice, and saury) at 0, 1, 5 and 10 kGy. For TL analysis, the contaminating silicate minerals were obtained by density separation or acid hydrolysis treatment. PSL determinations indicated that all the non-irradiated samples showed PSL photon counts/60 s (PCs) lower than 700 PCs (negative), but the irradiated mussel sample at 5 and 10 kGy were only possibility identified showing higher than 5000 PCs (positive). Irrespective of sample kinds and methods of mineral separation, all the non-irradiated samples showed TL glow curves in low-intensity with a maximum peak only after $250^{\circ}C$. However, all the irradiated samples produced TL glow curves in high intensity with a maximum peak particularly in the temperature range of 1$150{\sim}250^{\circ}C$. In conclusion, more distinguishable TL results [glow curve, TL ratio ($TL_1/TL_2$)] were obtained from the marker minerals separated by acid hydrolysis rather than density method.