• 제목/요약/키워드: global-local enrichment functions

검색결과 4건 처리시간 0.016초

전처리된 켤레구배법의 전체-국부 확장함수를 지닌 일반유한요소해석에의 응용 (Application of the Preconditioned Conjugate Gradient Method to the Generalized Finite Element Method with Global-Local Enrichment Functions)

  • 최원정;김민숙;김대진;이영학;김희철
    • 한국전산구조공학회논문집
    • /
    • 제24권4호
    • /
    • pp.405-412
    • /
    • 2011
  • 본 논문에서는 켤레구배법을 이용해 전체-국부 확장함수를 지닌 일반유한요소법을 해석하는 방식을 제안한다. 이 기법은 편미분방정식의 해에 대한 정보가 충분하지 않은 경우에도 수치해석적인 방법으로 일반유한요소법의 확장함수를 구성할 수 있으며, 해석과정 중 약간의 추가적인 연산만으로 좋은 성능을 지닌 전처리행렬 및 초기 추측치를 구성할 수 있어 국부적으로 복잡한 거동을 보이는 문제의 해석에 효과적이다. 본 논문에 포함된 수치해석 예제의 결과는 제안된 기법이 가우스 소거법과 같은 직접 솔버를 이용하는 경우보다 수치해석적으로 더 효율적임을 보여준다.

Error estimation for 2-D crack analysis by utilizing an enriched natural element method

  • Cho, J.R.
    • Structural Engineering and Mechanics
    • /
    • 제76권4호
    • /
    • pp.505-512
    • /
    • 2020
  • This paper presents an error estimation technique for 2-D crack analysis by an enriched natural element (more exactly, enriched Petrov-Galerkin NEM). A bare solution was approximated by PG-NEM using Laplace interpolation functions. Meanwhile, an accurate quasi-exact solution was obtained by a combined use of enriched PG-NEM and the global patch recovery. The Laplace interpolation functions are enriched with the near-tip singular fields, and the approximate solution obtained by enriched PG-NEM was enhanced by the global patch recovery. The quantitative error amount is measured in terms of the energy norm, and the accuracy (i.e., the effective index) of the proposed method was evaluated using the errors which obtained by FEM using a very fine mesh. The error distribution was investigated by calculating the local element-wise errors, from which it has been found that the relative high errors occurs in the vicinity of crack tip. The differences between the enriched and non-enriched PG-NEMs have been investigated from the effective index, the error distribution, and the convergence rate. From the comparison, it has been justified that the enriched PG-NEM provides much more accurate error information than the non-enriched PG-NEM.

켤레구배법의 전체-국부 확장함수를 지닌 일반유한요소해석에의 응용 (Application of the Preconditioned Conjugate Gradient Method to the Generalized FEM with Global-Local Enrichment Functions)

  • 최원정;김희철;이영학;김대진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2011년도 정기 학술대회
    • /
    • pp.768-772
    • /
    • 2011
  • 본 논문에서는 켤레구배법을 이용해 전체-국부 확장함수를 지닌 일반유한요소법을 해석하는 방식을 제안한다. 이 기법은 편미분방정식의 해에 대한 정보가 충분하지 않은 경우에도 수치해석적인 방법으로 일반 유한요소법의 확장함수를 구성할 수 있으며 해석 과정 중 추가의 계산 없이 좋은 성능을 지닌 전처리값 및 초기 추측치를 활용할 수 있어 국부적으로 복잡한 거동을 보이는 문제의 해석에 유리하다. 본 논문에 포함된 수치해석 예제의 결과는 제안된 기법이 가우스 소거법과 같은 직접 솔버를 이용하는 경우보다 수치 해석적으로 더 효율적임을 보여준다.

  • PDF

전체-국부 확장함수를 지닌 일반유한요소법을 이용한 탄소성해석 (Analysis of Elasto-Plastic Problems Using the Generalized Finite Element Method with Global-Local Enrichment Functions)

  • 한소정;김희철;이영학;김대진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2011년도 정기 학술대회
    • /
    • pp.773-777
    • /
    • 2011
  • 본 논문에서는 국부적으로 비선형 거동을 보이는 고전적인 $J_2$ 소성흐름 이론에 근거한 탄소성 문제의 해를 효율적으로 구하기 위해 전체-국부 확장함수를 지닌 일반유한요소법을 제안한다. 제안된 기법은 비선형 거동을 보이는 영역을 포함하는 국부 문제의 비선형 해를 구하고 이를 일반유한요소법의 단위 오목 분할의 개념을 통해 전체 문제의 해 공간을 확장하는데 이용한다. 이는 적은 계산량으로 복잡한 탄소성문제의 정확한 해를 얻는 것을 가능하게 하며 기법의 강건성과 정확성을 입증하기 위한 수치해석 예제가 다루어진다.

  • PDF