• Title/Summary/Keyword: global-local enrichment functions

Search Result 4, Processing Time 0.015 seconds

Application of the Preconditioned Conjugate Gradient Method to the Generalized Finite Element Method with Global-Local Enrichment Functions (전처리된 켤레구배법의 전체-국부 확장함수를 지닌 일반유한요소해석에의 응용)

  • Choi, Won-Jeong;Kim, Min-Sook;Kim, Dae-Jin;Lee, Young-Hak;Kim, Hee-Cheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.405-412
    • /
    • 2011
  • This paper introduces the generalized finite element method with global-local enrichment functions using the preconditioned conjugate gradient method. The proposed methodology is able to generate enrichment functions for problems where limited a-priori knowledge on the solution is available and to utilize a preconditioner and initial guess of good quality with only small addition of computational cost. Thus, it is very effective to analyze problems where a complex behavior is locally exhibited. Several numerical experiments are performed to confirm its effectiveness and show that it is computationally more efficient than the analysis utilizing direct solvers such as Gauss elimination method.

Error estimation for 2-D crack analysis by utilizing an enriched natural element method

  • Cho, J.R.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.505-512
    • /
    • 2020
  • This paper presents an error estimation technique for 2-D crack analysis by an enriched natural element (more exactly, enriched Petrov-Galerkin NEM). A bare solution was approximated by PG-NEM using Laplace interpolation functions. Meanwhile, an accurate quasi-exact solution was obtained by a combined use of enriched PG-NEM and the global patch recovery. The Laplace interpolation functions are enriched with the near-tip singular fields, and the approximate solution obtained by enriched PG-NEM was enhanced by the global patch recovery. The quantitative error amount is measured in terms of the energy norm, and the accuracy (i.e., the effective index) of the proposed method was evaluated using the errors which obtained by FEM using a very fine mesh. The error distribution was investigated by calculating the local element-wise errors, from which it has been found that the relative high errors occurs in the vicinity of crack tip. The differences between the enriched and non-enriched PG-NEMs have been investigated from the effective index, the error distribution, and the convergence rate. From the comparison, it has been justified that the enriched PG-NEM provides much more accurate error information than the non-enriched PG-NEM.

Application of the Preconditioned Conjugate Gradient Method to the Generalized FEM with Global-Local Enrichment Functions (켤레구배법의 전체-국부 확장함수를 지닌 일반유한요소해석에의 응용)

  • Choi, Won-Jeong;Kim, Hee-Cheul;Lee, Yoeng-Hak;Kim, Dae-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.768-772
    • /
    • 2011
  • 본 논문에서는 켤레구배법을 이용해 전체-국부 확장함수를 지닌 일반유한요소법을 해석하는 방식을 제안한다. 이 기법은 편미분방정식의 해에 대한 정보가 충분하지 않은 경우에도 수치해석적인 방법으로 일반 유한요소법의 확장함수를 구성할 수 있으며 해석 과정 중 추가의 계산 없이 좋은 성능을 지닌 전처리값 및 초기 추측치를 활용할 수 있어 국부적으로 복잡한 거동을 보이는 문제의 해석에 유리하다. 본 논문에 포함된 수치해석 예제의 결과는 제안된 기법이 가우스 소거법과 같은 직접 솔버를 이용하는 경우보다 수치 해석적으로 더 효율적임을 보여준다.

  • PDF

Analysis of Elasto-Plastic Problems Using the Generalized Finite Element Method with Global-Local Enrichment Functions (전체-국부 확장함수를 지닌 일반유한요소법을 이용한 탄소성해석)

  • Han, So-Jeong;Kim, Hee-Cheul;Lee, Young-Hak;Kim, Dae-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.773-777
    • /
    • 2011
  • 본 논문에서는 국부적으로 비선형 거동을 보이는 고전적인 $J_2$ 소성흐름 이론에 근거한 탄소성 문제의 해를 효율적으로 구하기 위해 전체-국부 확장함수를 지닌 일반유한요소법을 제안한다. 제안된 기법은 비선형 거동을 보이는 영역을 포함하는 국부 문제의 비선형 해를 구하고 이를 일반유한요소법의 단위 오목 분할의 개념을 통해 전체 문제의 해 공간을 확장하는데 이용한다. 이는 적은 계산량으로 복잡한 탄소성문제의 정확한 해를 얻는 것을 가능하게 하며 기법의 강건성과 정확성을 입증하기 위한 수치해석 예제가 다루어진다.

  • PDF