• Title/Summary/Keyword: global weather prediction model

Search Result 88, Processing Time 0.019 seconds

Performance Improvements of SCAM Climate Model using LAPACK BLAS Library (SCAM 기상모델의 성능향상을 위한 LAPACK BLAS 라이브러리의 활용)

  • Dae-Yeong Shin;Ye-Rin Cho;Sung-Wook Chung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.1
    • /
    • pp.33-40
    • /
    • 2023
  • With the development of supercomputing technology and hardware technology, numerical computation methods are also being advanced. Accordingly, improved weather prediction becomes possible. In this paper, we propose to apply the LAPACK(Linear Algebra PACKage) BLAS(Basic Linear Algebra Subprograms) library to the linear algebraic numerical computation part within the source code to improve the performance of the cumulative parametric code, Unicon(A Unified Convection Scheme), which is included in SCAM(Single-Columns Atmospheric Model, simplified version of CESM(Community Earth System Model)) and performs standby operations. In order to analyze this, an overall execution structure diagram of SCAM was presented and a test was conducted in the relevant execution environment. Compared to the existing source code, the SCOPY function achieved 0.4053% performance improvement, the DSCAL function 0.7812%, and the DDOT function 0.0469%, and all of them showed a 0.8537% performance improvement. This means that the LAPACK BLAS application method, a library for high-density linear algebra operations proposed in this paper, can improve performance without additional hardware intervention in the same CPU environment.

Prediction of Climate-induced Water Temperature using Nonlinear Air-water Temperature Relationship for Aquatic Environments (지구기후모형 기온변화에 따른 미래 하천생태환경에서의 수온 예측)

  • Lee, Khil-Ha
    • Journal of Environmental Science International
    • /
    • v.25 no.6
    • /
    • pp.877-888
    • /
    • 2016
  • To project the effects of climate-induced change on aquatic environments, it is necessary to determine the thermal constraints affecting different fish species and to acquire time series of the current and projected water temperature (WT). Assuming that a nonlinear regression between the WT at individual stations and the ambient air temperature (AT) at nearby weather stations could represent the best relationship of air-water temperature, This study estimates future WT using a general circulation model (GCM). In addition, assuming that the grid-averaged observations of AT correspond to the AT output from GCM simulation, this study constructed a regression curve between the observations of the local WT and the concurrent GCM-simulated surface AT. Because of its low spatial resolution, downscaling is unavoidable. The projected WT under global warming scenario A2 (B2) shows an increase of about $1.6^{\circ}C$ ($0.9^{\circ}C$) for the period 2080-2100. The maximum/minimum WT shows an amount of change similar to that of the mean values. This study will provide guidelines for decision-makers and engineers in climate-induced river environment and ecosystem management.

Learning the Covariance Dynamics of a Large-Scale Environment for Informative Path Planning of Unmanned Aerial Vehicle Sensors

  • Park, Soo-Ho;Choi, Han-Lim;Roy, Nicholas;How, Jonathan P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.326-337
    • /
    • 2010
  • This work addresses problems regarding trajectory planning for unmanned aerial vehicle sensors. Such sensors are used for taking measurements of large nonlinear systems. The sensor investigations presented here entails methods for improving estimations and predictions of large nonlinear systems. Thoroughly understanding the global system state typically requires probabilistic state estimation. Thus, in order to meet this requirement, the goal is to find trajectories such that the measurements along each trajectory minimize the expected error of the predicted state of the system. The considerable nonlinearity of the dynamics governing these systems necessitates the use of computationally costly Monte-Carlo estimation techniques, which are needed to update the state distribution over time. This computational burden renders planning to be infeasible since the search process must calculate the covariance of the posterior state estimate for each candidate path. To resolve this challenge, this work proposes to replace the computationally intensive numerical prediction process with an approximate covariance dynamics model learned using a nonlinear time-series regression. The use of autoregressive time-series featuring a regularized least squares algorithm facilitates the learning of accurate and efficient parametric models. The learned covariance dynamics are demonstrated to outperform other approximation strategies, such as linearization and partial ensemble propagation, when used for trajectory optimization, in terms of accuracy and speed, with examples of simplified weather forecasting.

Wildfire Risk Index Using NWP and Satellite Data: Its Development and Application to 2019 Kangwon Wildfires (기상예보모델자료와 위성자료를 이용한 산불위험지수 개발 및 2019년 4월 강원 산불 사례에의 적용)

  • Kim, Yeong-Ho;Kong, In-Hak;Chung, Chu-Yong;Shin, Inchul;Cheong, Seonghoon;Jung, Won-Chan;Mo, Hee-Sook;Kim, Sang-Il;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.337-342
    • /
    • 2019
  • This letter describes the development of WRI (Wildfire Risk Index) using GDAPS (Global Data Assimilation and Prediction System) and satellite data, and its application to the Goseong-Sokcho and Gangneung-Donghae wildfires in April 4, 2019. We made sure that the proposed WRI represented the change of wildfire risk of around March 19 and April 4 very well. Our approach can be a viable option for wildfire risk monitoring, and future works will be necessary for the utilization of GK-2A products and the coupling with the wildfire prediction model of the Korea Forest Service.

Sensitivities of WRF Simulations to the Resolution of Analysis Data and to Application of 3DVAR: A Case Study (분석자료의 분해능과 3DVAR 적용에 따른 WRF모의 민감도: 사례 연구)

  • Choi, Won;Lee, Jae Gyoo;Kim, Yu-Jin
    • Atmosphere
    • /
    • v.22 no.4
    • /
    • pp.387-400
    • /
    • 2012
  • This study aims at examining the sensitivity of numerical simulations to the resolution of initial and boundary data, and to an application of WRF (Weather Research and Forecasting) 3DVAR (Three Dimension Variational data Assimilation). To do this, we ran the WRF model by using GDAS (Global Data Assimilation System) FNL (Final analyses) and the KLAPS (Korea Local Analysis and Prediction System) analyses as the WRF's initial and boundary data, and by using an initial field made by assimilating the radar data to the KLAPS analyses. For the sensitivity experiment, we selected a heavy rainfall case of 21 September 2010, where there was localized torrential rain, which was recorded as 259.5 mm precipitation in a day at Seoul. The result of the simulation using the FNL as initial and boundary data (FNL exp) showed that the localized heavy rainfall area was not accurately simulated and that the simulated amount of precipitation was about 4% of the observed accumulated precipitation. That of the simulation using KLAPS analyses as initial and boundary data (KLAPC exp) showed that the localized heavy rainfall area was simulated on the northern area of Seoul-Gyeonggi area, which renders rather difference in location, and that the simulated amount was underestimated as about 6.4% of the precipitation. Finally, that of the simulation using an initial field made by assimilating the radar data to the KLAPS using 3DVAR system (KLAP3D exp) showed that the localized heavy rainfall area was located properly on Seoul-Gyeonggi area, but still the amount itself was underestimated as about 29% of the precipitation. Even though KLAP3D exp still showed an underestimation in the precipitation, it showed the best result among them. Even if it is difficult to generalize the effect of data assimilation by one case, this study showed that the radar data assimilation can somewhat improve the accuracy of the simulated precipitation.

Design of Rural Business Model to Prevent Reservoir Flood (저수지 침수 피해 예방을 위한 농촌 맞춤형 비즈니스 모델 설계)

  • Jo, Yerim;Lee, Jonghyuk;Seo, Byunghun;Kim, Dongsu;Seo, Yejin;Kim, Dongwoo;Choi, Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.3
    • /
    • pp.9-17
    • /
    • 2024
  • Agricultural reservoirs play a crucial role in rural areas, providing essential water resources for agriculture. However, collapses or overfilling of reservoirs can lead to significant damages to both property and lives. Unfortunately, the safety of agricultural reservoirs is often uncertain due to aging infrastructure and lack of comprehensive safety management systems. Additionally, the escalating severity of climate change exacerbates these risks, because of extreme weather events. This study proposes a business model for a flood damage management platform tailored to rural areas to predict downstream flooding caused by agricultural reservoirs and to integrate comprehensive reservoir safety management. It aims to predict more accurate downstream flood damage using improved methods based on previous studies. The proposed business model presents strategies for providing improved downstream flood damage prediction services, and identifies potential customers and service supply strategies for the flood damage management platform. Finally, it presents an economic analysis of the proposed business model and strategies for further revenue generation.

A Study on the Effect of Ground-based GPS Data Assimilation into Very-short-range Prediction Model (초단기 예측모델에서 지상 GPS 자료동화의 영향 연구)

  • Kim, Eun-Hee;Ahn, Kwang-Deuk;Lee, Hee-Choon;Ha, Jong-Chul;Lim, Eunha
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.623-637
    • /
    • 2015
  • The accurate analysis of water vapor in initial of numerical weather prediction (NWP) model is required as one of the necessary conditions for the improvement of heavy rainfall prediction and reduction of spin-up time on a very-short-range forecast. To study this effect, the impact of a ground-based Global Positioning System (GPS)-Precipitable Water Vapor (PWV) on very-short-range forecast are examined. Data assimilation experiments of GPS-PWV data from 19 sites over the Korean Peninsula were conducted with Advanced Storm-scale Analysis and Prediction System (ASAPS) based on the Korea Meteorological Administration's Korea Local Analysis and Prediction System (KLAPS) included "Hot Start" as very-short-range forecast system. The GPS total water vapor was used as constraint for integrated water vapor in a variational humidity analysis in KLAPS. Two simulations of heavy rainfall events show that the precipitation forecast have improved in terms of ETS score compared to the simulation without GPS-PWV data. In the first case, the ETS for 0.5 mm of rainfall accumulated during 3 hrs over the Seoul-Gyeonggi area shows an improvement of 0.059 for initial forecast time. In other cases, the ETS improved 0.082 for late forecast time. According to a qualitative analysis, the assimilation of GPS-PWV improved on the intensity of precipitation in the strong rain band, and reduced overestimated small amounts of precipitation on the out of rain band. In the case of heavy rainfall during the rainy season in Gyeonggi province, 8 mm accompanied by the typhoon in the case was shown to increase to 15 mm of precipitation in the southern metropolitan area. The GPS-PWV assimilation was extremely beneficial to improving the initial moisture analysis and heavy rainfall forecast within 3 hrs. The GPS-PWV data on variational data assimilation have provided more useful information to improve the predictability of precipitation for very short range forecasts.

The Analysis of Terrain Height Variance Spectra over the Korean Mountain Region and Its Impact on Mesoscale Model Simulation (한반도 산악 지역의 지형분산 스펙트럼과 중규모 수치모의에서의 효과 분석)

  • An, Gwang-Deuk;Lee, Yong-Hui;Jang, Dong-Eon;Jo, Cheon-Ho
    • Atmosphere
    • /
    • v.16 no.4
    • /
    • pp.359-370
    • /
    • 2006
  • Terrain height variance spectra for the Korean mountain region are calculated in order to determine an adequate grid size required to resolve terrain forcing on mesoscale model simulation. One-dimensional spectral analysis is applied to specifically the central-eastern part of the Korean mountain region, where topographical-scale forcing has an important effect on mesoscale atmospheric flow. It is found that the terrain height variance spectra in this mountain region has a wavelength dependence with the power law exponents of 1.5 at the wavelength near 30 km, but this dependence is steeply changed to 2.5 at the wavelength less than 30 km. For the adequate horizontal grid size selection on mesoscale simulation two-dimensional terrain height spectral analysis is also performed. There is no directionality within 50% of spectral energy region, so one-dimensional spectral analysis can be reasonably applied to the Korea Peninsula. According to the spectral analysis of terrain height variance, the finer grid size which is higher than 6 km is required to resolve a 90% of terrain variance in this region. Numerical simulation using WRF (Weather Research and Forecasting Model) was performed to evaluate the effect of different terrain resolution in accordance with the result of spectral analysis. The simulated results were quantitatively compared to observations and there was a significant improvement in the wind prediction across the mountain region as the grid space decreased from 18 km to 2 km. The results will provide useful guidance of grid size selection on mesoscale topographical simulation over the Korean mountain region.

Projected Future Extreme Droughts Based on CMIP6 GCMs under SSP Scenarios (SSP 시나리오에 따른 CMIP6 GCM 기반 미래 극한 가뭄 전망)

  • Kim, Song-Hyun;Nam, Won-Ho;Jeon, Min-Gi;Hong, Eun-Mi;Oh, Chansung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.4
    • /
    • pp.1-15
    • /
    • 2024
  • In recent years, climate change has been responsible for unusual weather patterns on a global scale. Droughts, natural disasters triggered by insufficient rainfall, can inflict significant social and economic consequences on the entire agricultural sector due to their widespread occurrence and the challenge in accurately predicting their onset. The frequency of drought occurrences in South Korea has been rapidly increasing since 2000, with notably severe droughts hitting regions such as Incheon, Gyeonggi, Gangwon, Chungbuk, and Gyeongbuk in 2015, resulting in significant agricultural and social damage. To prepare for future drought occurrences resulting from climate change, it is essential to develop long-term drought predictions and implement corresponding measures for areas prone to drought. The Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report outlines a climate change scenario under the Shared Socioeconomic Pathways (SSPs), which integrates projected future socio-economic changes and climate change mitigation efforts derived from the Coupled Model Intercomparison Project 6 (CMIP6). SSPs encompass a range of factors including demographics, economic development, ecosystems, institutions, technological advancements, and policy frameworks. In this study, various drought indices were calculated using SSP scenarios derived from 18 CMIP6 global climate models. The SSP5-8.5 scenario was employed as the climate change scenario, and meteorological drought indices such as the Standardized Precipitation Index (SPI), Self-Calibrating Effective Drought Index (scEDI), and Standardized Precipitation Evapotranspiration Index (SPEI) were utilized to analyze the prediction and variability of future drought occurrences in South Korea.

An Analysis of Model Bias Tendency in Forecast for the Interaction between Mid-latitude Trough and Movement Speed of Typhoon Sanba (중위도 기압골과 태풍 산바의 이동속도와의 상호작용에 대한 예측에서 모델 바이어스 경향분석)

  • Choi, Ki-Seon;Wongsaming, Prapaporn;Park, Sangwook;Cha, Yu-Mi;Lee, Woojeong;Oh, Imyong;Lee, Jae-Shin;Jeong, Sang-Boo;Kim, Dong-Jin;Chang, Ki-Ho;Kim, Jiyoung;Yoon, Wang-Sun;Lee, Jong-Ho
    • Journal of the Korean earth science society
    • /
    • v.34 no.4
    • /
    • pp.303-312
    • /
    • 2013
  • Typhoon Sanba was selected for describing the Korea Meteorological Administration (KMA) Global Data Assimilation Prediction System (GDAPS) model bias tendency in forecast for the interaction between mid-latitude trough and movement speed of typhoon. We used the KMA GDAPS analyses and forecasts initiated 00 UTC 15 September 2012 from the historical typhoon record using Typhoon Analysis and Prediction System (TAPS) and Combined Meteorological Information System-3 (COMIS-3). Sea level pressure fields illustrated a development of the low level mid-latitude cyclogenesis in relation to Jet Maximum at 500 hPa. The study found that after Sanba entered the mid-latitude domain, its movement speed was forecast to be accelerated. Typically, Snaba interacted with mid-latitude westerlies at the front of mid-latitude trough. This event occurred when the Sanba was nearing recurvature at 00 and 06 UTC 17 September. The KMA GDAPS sea level pressure forecasts provided the low level mid-latitude cyclone that was weaker than what it actually analyzed in field. As a result, the mid-latitude circulations affecting on Sanba's movement speed was slower than what the KMA GDAPS actually analyzed in field. It was found that these circulations occurred due to the weak mid-tropospheric jet maximum at the 500 hPa. In conclusion, the KMA GDAPS forecast tends to slow a bias of slow movement speed when Sanba interacted with the mid-latitude trough.