• Title/Summary/Keyword: global positioning system (GPS) antenna

Search Result 86, Processing Time 0.021 seconds

Compact Circularly Polarized Antenna with a Capacitive Feed for GPS/GLONASS Applications

  • Jeong, Seong Jae;Hwang, Keum Cheol;Hwang, Do-In
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.767-770
    • /
    • 2012
  • This letter presents a novel compact circularly polarized patch antenna for Global Positioning System/Global Navigation Satellite System (GPS/GLONASS) applications. The proposed antenna is composed of a simple square radiating patch fed by a capacitive dual-feeder to increase the impedance bandwidth and a lumped element hybrid coupler to achieve the broadband characteristic of the axial ratio (AR). The realized antenna dimensions are $28mm{\times}28mm{\times}4mm$, which is the most compact size among the dual-band GPS/GLONASS antennas reported to date. The measured results demonstrate that the proposed antenna has a gain of 2.5 dBi to 4.2 dBi and an AR of 0.41 dB to 1.51 dB over the GPS/GLONASS L1 band (1.575 GHz to 1.61 GHz).

A Wideband Circularily Polarized Antenna for GPS/GLONASS Comboned Receiver (GPS/GLONASS 통합 수신기용 광대역 원편파 안테나)

  • 정수영;이택경
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.868-875
    • /
    • 2000
  • GPS(Global Positioning System) is widely used in the navigation system, ITS(Intelligence Transportation System), and mobile communications. Recently, it is considered to combine the GPS receiver with the CLONASS for the improvement of performance and accuracy. In this paper, a wideband aperture-coupled patch antenna with circular polarization is designed and implemented for the use of CPS/GLONASS combined receiver. The measured characteristics of the manufactured antenna shows the - l5 dB bandwidth of 220 MHz and the axial ratio less than 2.1 dB, and it satisfies the requirements of the GPS/GLONASS antenna.

  • PDF

Design of a Vehicle-Mounted GPS Antenna for Accurate Positioning (차량 정밀 측위용 이중대역 GPS 안테나 설계)

  • Pham, Nu;Chung, Jae-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.145-150
    • /
    • 2016
  • The capability of accurate positioning and tracking is necessary to implement an unmanned autonomous driving system. The moving-baseline GPS Technique is a promising candidate to mitigate positioning errors of conventional GPS system. It provides accurate positioning data based on the phase difference between received signals from multiple GPS antennas mounted on the same platform. In this paper, we propose a dual-band dual-circularly-polarized antenna suitable for the moving-baseline GPS. The proposed antenna operates at GPS L1 and L2 bands, and fed by the side of the antenna instead of the bottom. The antenna is firstly designed by calculating theoretical values of key parameters, and then optimized by means of 3D full-wave simulation software. Simulation and measurement results show that the optimized antenna offers 6.1% and 3.7% bandwidth at L1 and L2, respectively, with axial ratio bandwidth of more than 1%. The size of the antenna is $73mm{\times}73mm{\times}6.4mm$, which is small and low-profile.

The Design of Dielectric Ceramic Antenna for GPS (GPS 용 유전체 세라믹 안테나의 설계)

  • 김현철;노용래;김인태;김윤호
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.977-984
    • /
    • 1996
  • This paper analyzes the performance of a rectangular dielectric ceramic antenna by the theoretical cavity model such as input impedance resonant frequency quality factor efficiency and bandwidth. Through a compu-ter simulation variation of the antenna characteristics is found as a function of the antenna parametes. (permit-tivity permeability antenna size etc) Based on the results we propose a new design method for the dielectric ceramic antenna to be employed in Global Positioning Systems.

  • PDF

Performance Analysis of Linear Array Antenna for Anti-jamming GPS Systems (항재밍 GPS 시스템을 위한 선형 어레이 안테나 성능 분석)

  • Kim, Kiyun
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.46-51
    • /
    • 2015
  • In this paper, I design a linear array antenna simulator for anti-jamming GPS systems and perform various performance analysis by simulation. First, I generate simulated transmission signals through the analysis of GPS satellite signal structure, and analyze SNR(Signal to Noise power Ratio) performance of linear array antenna according to number of arrays under noise environments. In addition, I analyze the performance of the anti-jamming beam pattern using MMSE(Minimum Mean Square Error) signal processing method, and also analyze the anti-jamming performance considering antenna calibration problem when there are different delays between arrays.

Design and fabrication of the GPS antenna system including RF-stage (RF 수신부를 내장한 GPS 안테나 시스템의 설계 및 제작)

  • 홍성일;이정호;변건식;정만영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.99-107
    • /
    • 1996
  • When GPS (global positioning system) is used as synchronous signal in CDMA digital cellular base station system and high speed digital synchronous communication network, antenna cable length is increased, comparing with other GPS application such as positioning or car navigation. In this paper, it is proposed that a type of new GPS antenna system including RF stage for reduction of cable loss in case of long cable.The antenna system with TMPA(truncated-corners microstrip patch antenna) is designed and fabricated because GPS signal has RHCP (right-hand circular polarization), consequently antenna size can be made small size. LNA (low noise amplifier) is designed by using HEMT(high electron mobility transistor)which has lower noise figurae and better AGC characteristics at low voltage than GaAs FET, and we equiped mixer, in GPS antenna unit, which converts from 1575.42MHz to 75.42MHz. As result of comparing between typical system and proposed system when cable length is 60m, 63dB, 55dB and 25dB gain are obtained for RG-316/U, RG-58C/U and RG-213/U, and better characteristics are achieved than typical system as far as cable length is longer.

  • PDF

Comparison of Calibration Methods of Phase Center Variations for Precise GPS Monument Positioning (정확한 GPS 기준국 좌표산출을 위한 위상중심 변동량 계산방법 비교)

  • Won Ji-Hye;Park Kwan-Dong;Ha Ji-Hyun;Kim Sang-Ho
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.9-14
    • /
    • 2006
  • A determinated position with GPS (Global Positioning System) data processing is the position of the phase center of a GPS antenna. The phase center of a GPS antenna is. not a stable point and depends on the azimuth and elevation angles of GPS satellites. It is known that the phase center variations (PCV) of a GPS antenna are greater in the vertical than the horizontal directions. The PCV calibration models for a GPS. antenna has two approaches: relative and absolute. In this study. we compared the two calibration models using the six operational permanent GPS stations in South Korea and analysed the PCV of each station. In addition, we. tested two different kinds of GPS antennas and compared the results. The accuracy and precision of the relative calibration was worse than the absolute calibration.

  • PDF

Wireless links for global positioning system receivers

  • Casciati, Fabio;Wu, Lijun
    • Smart Structures and Systems
    • /
    • v.10 no.1
    • /
    • pp.1-14
    • /
    • 2012
  • Given an object, its positioning in the space is a main concern in structural monitoring and a required feedback in structural health monitoring, structural control and robotics. In addition, to make the sensor unit wireless is a crucial issue for advanced applications. This paper deals with the exploitation of wireless transmission technology to long-term monitoring GPS (Global Positioning System) receivers - like the Leica GMX 902 and the Leica GRX 1200-pro. These GPS receivers consist of five parts: antenna, receiver, user client computer, interface and power supply. The antenna is mounted on the object to be monitored and is connected with the receiver by a coaxial-cable through which the radio frequency signals are transmitted. The receiver unit acquires, tracks and demodulates the satellite signals and provides, through an interface which in this paper is made wireless, the resulting GPS raw data to the user client computer for being further processed by a suitable positioning algorithm. The power supply reaches the computer by a wired link, while the other modules rely on batteries re-charged by power harvesting devices. Two wireless transmission systems, the 24XStream and the CC1110, are applied to replace the cable transmission between the receiver and the user client computer which up to now was the only market offer. To verify the performance and the reliability of this wireless transmission system, some experiments are conducted. The results show a successful cable replacement.

Dual Band Antenna for GPS and Satellite Radio System (GPS 및 위성 라디오용 이중 대역 안테나)

  • 공기현;이학용;강기조;김종규;김종헌;이종철;김남영;박면주;이병제
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.4
    • /
    • pp.343-350
    • /
    • 2003
  • Circularly polarized-dual band antenna for GPS(Global Positioning System) and satellite radio system is developed and measured. Both circular polarization and overall antenna dimension reduction are achieved by placing a partially filled high-permittivity substrate under radiating edges. The bandwidth is also improved by choosing an optimal geometric configuration with a partially filled high permittivity substrate. The proposed antenna can be installed on moving vehicles or ships.

Performance Analysis of the GPS Antenna for Satellite Launch Vehicles under the Hot -Temperature Environment

  • Moon, Ji-Hyeon;Kwon, Byung-Moon;Choi, Hyung-Don
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.273-278
    • /
    • 2006
  • In order to use a GPS antenna for launch vehicles, it should be installed on the skin of the vehicle and be able to normally receive the live GPS signals during the vehicle's full flight mission. The GPS antenna on the surface of the launch vehicle is, however, exposed to higher temperature than inner equipments of the vehicle due to aerodynamic heating generated during the flight. Test specification of the GPS antenna for qualification of hot-temperature is determined to $+95^{\circ}C$ that is higher than inner components by $25^{\circ}C$. Test results in this paper show that the GPS antenna normally operates under the above environment.

  • PDF