• 제목/요약/키워드: global position system

Search Result 607, Processing Time 0.027 seconds

A Study on The Reality of Loran-C System and Its Applications (로란-C 시스템의 현황과 효율적인 활용방안에 관한 연구)

  • Kwon, Hyuk-Dong;Seo, Ki-Yeol;Park, Gyei-Kark
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.2 s.21
    • /
    • pp.61-67
    • /
    • 2004
  • The development motive and maintenance of navigation system were military strategy purpose since middle of 20th century. During cold war period between the United States and the Soviet since the Second World War, advanced navigation system that two countries are responded individually have done development competitively. These systems are exhibited on general except military purpose gradually and are taking charge of point role in economy transport activity such as transportation of logistics between the country. Navigation system can divide into ground system and satellite system. Representative system of ground system is Loran-C(Long Range Navigation), and representative system of satellite system is GPS(Global Position System). Loran-C system is a system that use much in all the world country sea and ground, but GPS and DGPS that present is a satellite navigation system are used much. According to development of satellite system, examine about actual conditions of Loran-C navigation system and practical use plan in this paper because there is controversy about role of Loran-C navigation device along with Loran-C's operation and user decrease, and discusses for Loran-C's development direction.

  • PDF

Position and Measurement Performance Analysis of GPS Receiver applied LQG based Vector Tracking Loop (LQG 기반 벡터 추적 루프를 적용한 GPS 수신기의 위치 및 측정치 성능 분석)

  • Park, Min-Huck;Jeon, Sang-Hoon;Kim, Chong-Won;Kee, Chang-Don;Seo, Seung-Woo;Jang, Jae-Gyu;So, Hyoung-Min;Park, Jun-Pyo
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.43-49
    • /
    • 2017
  • Generally, loop filter based scalar tracking loops (LF-STL) have been used for global positioning system (GPS) signal tracking algorithm. This paper introduces the accuracy and robustness of linear-quadratic-Gaussian based vector tracking loop (LQG-VTL) algorithm instead of LF-STL. To verify the accuracy of LQG-VTL, we confirm that the measurements estimation errors of the LQG based scalar tracking loops (LQG-STL) are improved by more than 60 % compared to LF-STL. Also, when LQG-VTL is used, measurements estimation errors decrease compared to LQG-STL, and position/velocity estimation errors also decrease as the number of satellites increases. To verify the robustness of LQG-VTL, we confirm that LQG-VTL can estimate position/velocity and measurements successively compared to LF-STL in temporal signal attenuation of 30 dB-Hz during 4 seconds.

Development of GPS Multipath Error Reduction Method Based on Image Processing in Urban Area (디지털 영상을 활용한 도심지 내 GPS 다중경로오차 경감 방법 개발)

  • Yoon, Sung Joo;Kim, Tae Jung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.2
    • /
    • pp.105-112
    • /
    • 2018
  • To determine the position of receiver, the GPS (Global Positioning System) uses position information of satellites and pseudo ranges based on signals. These are reflected by surrounding structures and multipath errors occur. This paper proposes a method for multipath error reduction using digital images to enhance the accuracy. The goal of the study is to calculate the shielding environment of receiver using image processing and apply it to GPS positioning. The proposed method, firstly, performs a preprocessing to reduce the effect of noise on images. Next, it uses hough transform to detect the outline of building roofs and determines mask angles and permissible azimuth range. Then, it classifies the satellites according to the condition using the image processing results. Finally, base on point positioning, it computes the receiver position by applying a weight model that assigns different weights to the classified satellites. We confirmed that the RMSE (Root Mean Square Error) was reduced by 2.29m in the horizontal direction and by 15.62m in the vertical direction. This paper showed the potential for the hybrid of GPS positioning and image processing technology.

Evaluation of the Implementation of ISO 11783 for 250 kbps Transmission Rate of Tractor Electronic Control Unit

  • Lee, Dong-Hoon;Lee, Kyou-Seung;Moon, Jae-Min;Park, Seung-Je;Kim, Cheol-Soo;Kim, Myeong-Ho;Cho, Yong-Jin;Kim, Seong-Min
    • Journal of Biosystems Engineering
    • /
    • v.37 no.4
    • /
    • pp.225-232
    • /
    • 2012
  • Purpose: Accurate monitoring of information from various agricultural vehicles is one of the most important factors for appropriate management strategy of field operations. While there has been a number of study and design on applications of sensors and actuators for data acquisition and control system in tractor, incompatibility between various customized hardware and software has become a major obstacle to the universal deployment in real field operation. International standard for implementation of electronic control unit (ECU) in agricultural vehicles has becoming a mandatory requirement for inter-operation compatibility in the international trade of agricultural vehicle industries. The ISO 11783 standard is basically based upon well known communication technology designated using the controller area network (CAN) bus. While CAN bus could provide 1.0 Mbps of communication speed, the standard only recommended 250 kbps. Methods: This study presents the implementation and evaluation of ISO 11783 for tractor electronic control units (TECU)with a higher transmission rate from multiple ECU than 250 kbps. Throughput and loss rate of the developed prototype were calculated across manipulated bus load for laboratory experimental tests, and the maximum requirement of transmission rate by ISO 11873 was satisfied with lower than 60% of bus load. Results: Field tests with a TECU implemented to process messages from global positioning system (GPS) receiver resulted that the root mean square error of position information was lower than 4 m with 0.5 m/s as a travelling speed. Conclusions: Results of this study represent the utilization of the international standard ISO 11783 to providepractical developments in terms with the inter-operability of TECU.

A Study on the Performane Requirement of Precise Digital Map for Road Lane Recognition (차로 구분이 가능한 정밀전자지도의 성능 요구사항에 관한 연구)

  • Kang, Woo-Yong;Lee, Eun-Sung;Lee, Geon-Woo;Park, Jae-Ik;Choi, Kwang-Sik;Heo, Moon-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.47-53
    • /
    • 2011
  • To enable the efficient operation of ITS, it is necessary to collect location data for vehicles on the road. In the case of futuristic transportation systems like ubiquitous transportation and smart highway, a method of data collection that is advanced enough to incorporate road lane recognition is required. To meet this requirement, technology based on radio frequency identification (RFID) has been researched. However, RFID may fail to yield accurate location information during high-speed driving because of the time required for communication between the tag and the reader. Moreover, installing tags across all roads necessarily incurs an enormous cost. One cost-saving alternative currently being researched is to utilize GNSS (global navigation satellite system) carrierbased location information where available. For lane recognition using GNSS, a precise digital map for determining vehicle position by lane is needed in addition to the carrier-based GNSS location data. A "precise digital map" is a map containing the location information of each road lane to enable lane recognition. At present, precise digital maps are being created for lane recognition experiments by measuring the lanes in the test area. However, such work is being carried out through comparison with vehicle driving information, without definitions being established for detailed performance specifications. Therefore, this study analyzes the performance requirements of a precise digital map capable of lane recognition based on the accuracy of GNSS location information and the accuracy of the precise digital map. To analyze the performance of the precise digital map, simulations are carried out. The results show that to have high performance of this system, we need under 0.5m accuracy of the precise digital map.

Online correction of drift in structural identification using artificial white noise observations and an unscented Kalman Filter

  • Chatzi, Eleni N.;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.295-328
    • /
    • 2015
  • In recent years the monitoring of structural behavior through acquisition of vibrational data has become common practice. In addition, recent advances in sensor development have made the collection of diverse dynamic information feasible. Other than the commonly collected acceleration information, Global Position System (GPS) receivers and non-contact, optical techniques have also allowed for the synchronous collection of highly accurate displacement data. The fusion of this heterogeneous information is crucial for the successful monitoring and control of structural systems especially when aiming at real-time estimation. This task is not a straightforward one as measurements are inevitably corrupted with some percentage of noise, often leading to imprecise estimation. Quite commonly, the presence of noise in acceleration signals results in drifting estimates of displacement states, as a result of numerical integration. In this study, a new approach based on a time domain identification method, namely the Unscented Kalman Filter (UKF), is proposed for correcting the "drift effect" in displacement or rotation estimates in an online manner, i.e., on the fly as data is attained. The method relies on the introduction of artificial white noise (WN) observations into the filter equations, which is shown to achieve an online correction of the drift issue, thus yielding highly accurate motion data. The proposed approach is demonstrated for two cases; firstly, the illustrative example of a single degree of freedom linear oscillator is examined, where availability of acceleration measurements is exclusively assumed. Secondly, a field inspired implementation is presented for the torsional identification of a tall tower structure, where acceleration measurements are obtained at a high sampling rate and non-collocated GPS displacement measurements are assumed available at a lower sampling rate. A multi-rate Kalman Filter is incorporated into the analysis in order to successfully fuse data sampled at different rates.

Vehicle Displacement Estimation By GPS and Vision Sensor (영상센서/GPS에 기반한 차량의 이동변위 추정)

  • Kim, Min-Woo;Lim, Joon-Hoo;Park, Je-Doo;Kim, Hee-Sung;Lee, Hyung-Keun
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.3
    • /
    • pp.417-425
    • /
    • 2012
  • It is well known that GPS cannot provide positioning results if sufficient number of visible satellites are not available. To overcome this weak point, attentions have been recently moved to hybrid positioning methods that augments GPS with other sensors. As an extension of hybrid positiong methods, this paper proposes a new method that combines GPS and vision sensor to improve availability and accuracy of land vehicle positioning. The proposed method does not require any external map information and can provide position solutions if more than 2 navigation satellites are visible. To evaluate the performance of the proposed method, an experiment result with real measurements is provided and a result shows that accumulated error of n-axis is almost 2.5meters and that of e-axis is almost 3meters in test section.

A Study on the Exhibition Method to Enhance the Visitors' Understanding Contents - Focus on the Domestic Dam Exhibition Centers - (콘텐츠 이해도 강화를 위한 전시방식에 관한 연구 - 국내 댐 전시관을 중심으로 -)

  • Yi, Joo-Hyoung
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.3
    • /
    • pp.196-204
    • /
    • 2010
  • Human beings are having suffered from the unexpected climate changes which are caused by global warming leaded from air pollution. More than 3 billions of people will be forced to experience insufficient water in 2015. In Korea, over 70% of precipitation has been concentrating in Summer season. Furthermore, natural disasters has been occurred constantly all over the country. The unusual flood and drought have broken out not only victims but also, property damages. By the natural condition, the effective consuming and controlling system of water is going to be the core business field and constructing dams will be encouraged and promoted for the system. To convince the objectionable against the constructing dams, a dam exhibition center stands the very important position by being responsible for the presenting positive factors and highlighting the beneficial functions. The dam exhibition center is built as complex space combined by information center regarding water resources and visitor center for the community nearby the inundated area. Combined of the different purposes, the dam exhibition center can be confused to understand the concept and contents established in the space. To enhance the visitors' understanding contents of the dam exhibition center, the spatial composition and contents are being analyzed with existing centers and define the most effective exhibition methods between the spaces and visitors. This study will be the basic quantitative analysis data for the following design works those can get the better insight how to make visitors to get information and agreement of constructing dams effectively.

An LED Positioning Method Using Image Sensor of a Smart Device (LED 조명과 스마트 디바이스의 이미지 센서를 이용한 실내 측위 기법)

  • Kim, Jae-Hoon;Kim, Byoung-Sup;Jeon, Hyun-Min;Kang, Suk-Yon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.390-396
    • /
    • 2015
  • The drastic growth of mobile communication and spreading of smart phone make the significant attention on Location Based Service. The one of most important things for vitalizations of LBS is the accurate estimating position for mobile object. Focusing on an image sensor deployed in smart phone, we develop a LED based positioning estimation framework. The developed approaches can strengthen the advantages of independent indoor applicability of LED. The estimation of LED based positioning is effectively applied to any indoor environment. We put a focus especially on the algorithmic framework. of image processing of smart phone. From LED lighting, we can obtain a typical signal image which contains the unique positioning information. Furthermore test-bed based on smart phone platform is practically developed and all data have been harvested from the actual measurement of test indoor area. This can approve the practical usefulness of proposed framework.

DGPS/IMU-based Photogrammetry in China

  • Yingcheng, Li;Xueyou, Li;Jicheng, Zhao;Xunping, Gong;Tang, Liang
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1215-1220
    • /
    • 2003
  • People's Republic of China is one of the most rapidly developing countries in the world today. There is a great demand on highly actual and accurate spatial information of the whole country, especially of West China which becomes the focus of development of the Chinese government right now and in the next years, but where still not enough topographic maps are available. This raises great challenges to the surveying and mapping community in China. Facing the new challenges the Chinese Academy of Surveying and Mapping (CASM) started its pioneer work early 2002 to explore new techniques and technologies available today toward increasing the map productivity. With import of a CCNS/AEROcontrol system in November 2002 the first DGPS/IMU-based photogrammetric project in China was successfully accomplished jointly by CASM and the Germany-based companies IGI and Techedge. Two photogrammetric blocks of 1:4,000 and 1:20,000 photo scale, respectively, were flown in Anyang, China. Direct georeferencing and integrated sensor orientation were conducted. Results achieved were proven by using ground check points and compared with those of aerial triangulation. Orthophotos generated based on direct georeferencing shows the high efficiency and quality, and thus proved the promise of the new technology. Furthermore several DGPS/IMU-based photogammetric projects was accomplished one by one and a big project of more than 100,000 km2 in the Inner Mongolia will be started in August 2003. The paper presents experiences with DGPS/IMU-based photogrammetry in China. Results achieved in concrete projects are shown and evaluated. Politic and technical specialties in China are discussed. Conclusions outline the potential of DGPS/IMU-based photogrammetric production in China.

  • PDF