• Title/Summary/Keyword: global performance analysis

Search Result 1,368, Processing Time 0.031 seconds

A Study on the Performance of an 100 kW Class Tidal Current Turbine (100 kW급 조류발전용 터빈의 성능에 관한 연구)

  • Kim, Bu-Gi;Yang, Chang-Jo;Choi, Min-Seon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.2
    • /
    • pp.145-152
    • /
    • 2012
  • As the problems of global warming are brought up recently, many skillful solutions for developing new renewable energy are suggested. One of the most remarkable things is ocean energy. Korea has abundant ocean energy resources owing to geographical characteristics surrounded by sea on three sides, thus the technology of commercialization about tidal current power, wave power is demanded. Especially, Tidal energy conversion system is a means of maintaining environment naturally. Tidal current generation is a form to produce electricity by installing rotors, generators to convert a horizontal flow generated by tidal current into rotating movement. According to rotor direction, a tidal current turbine is largely distinguished between horizontal and vertical axis shape. Power capacity depends on the section size crossing a rotor and tidal current speed. We therefore investigated three dimensional flow analysis and performance evaluation using commercial ANSYS-CFX code for an 100 kW class horizontal axis turbine for low water level. Then We also studied three dimensional flow characteristics of a rotating rotor and blade surface streamlines around a rotor. As a result, We found that torque increased with TSR, the maximum torque occurred at TSR 3.77 and torque decreased even though TSR increased. Moreover we could get power coefficient 0.38 at designed flow velocity.

A Study on Structural Analysis for Improving Driving Performance of Agricultural Electric Car (농업용 전기운반차의 주행성능 향상을 위한 구조해석에 관한 연구)

  • Jo, Jae-Hyun;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.556-561
    • /
    • 2020
  • The aging and declining agricultural population in the modern society requires improvement of the agricultural environment and is one of the representative problems. And since most of the work systems always require a transport work, the ratio of labor consumed in the transport work is very high. Accordingly, many types of transport vehicles are being developed and sold, and in the early days, most of them are powered transport vehicles using fossil fuels. However, it is paying attention to next-generation eco-friendly energy such as hydrogen, fuel cells, solar power, and bio due to the strengthening of international environmental regulations such as global warming and the Convention on Climate Change and the depletion of fossil fuels. Therefore, in this study, the ultimate goal is to develop an eco-friendly, easy-to-operate, safe agricultural electric vehicle that replaces fossil fuels. It was designed with a focus on controlling a wide range of vehicle speeds and securing stability of electric agricultural vehicles. Considering the performance and design, it is composed of a frame, a driving part, a steering part, and a controller system, and we are going to review and manufacture each part. It is believed that the manufactured electric vehicle for agriculture can be easily and conveniently operated in an agricultural society where young manpower is scarce, and can be helpful to the agricultural society through high efficiency.

A study of artificial neural network for in-situ air temperature mapping using satellite data in urban area (위성 정보를 활용한 도심 지역 기온자료 지도화를 위한 인공신경망 적용 연구)

  • Jeon, Hyunho;Jeong, Jaehwan;Cho, Seongkeun;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.855-863
    • /
    • 2022
  • In this study, the Artificial Neural Network (ANN) was used to mapping air temperature in Seoul. MODerate resolution Imaging Spectroradiomter (MODIS) data was used as auxiliary data for mapping. For the ANN network topology optimizing, scatterplots and statistical analysis were conducted, and input-data was classified and combined that highly correlated data which surface temperature, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), time (satellite observation time, Day of year), location (latitude, hardness), and data quality (cloudness). When machine learning was conducted only with data with a high correlation with air temperature, the average values of correlation coefficient (r) and Root Mean Squared Error (RMSE) were 0.967 and 2.708℃. In addition, the performance improved as other data were added, and when all data were utilized the average values of r and RMSE were 0.9840 and 1.883℃, which showed the best performance. In the Seoul air temperature map by the ANN model, the air temperature was appropriately calculated for each pixels topographic characteristics, and it will be possible to analyze the air temperature distribution in city-level and national-level by expanding research areas and diversifying satellite data.

The Effect of tourism risk perception on tourism attitudes and intentions: Focus on the contex of COVID-19 (관광위험지각이 관광 태도와 의도에 미치는 영향: COVID-19 상황을 중심으로)

  • Lim, Myoung-Jae
    • Journal of Digital Convergence
    • /
    • v.20 no.3
    • /
    • pp.459-468
    • /
    • 2022
  • The outbreak of COVID-19 is facing a global crisis. Therefore, this study comprehensively reviews the risk perception, tourism attitude, and tourism intention of potential tourists in the COVID-19 situation. As a research finding, three factors were derived for tourism risk perception: physical risk, social risk, and performance risk. It is verified that social risk to be a significant factors affecting tourism attitude. Also, it proved that social risk, performance risk to be important factors affecting tourism intention. A t-test was conducted to examine the implications of demographic characteristics(gender, age, job) in the study. As a result of the analysis, it was found that potential tourists in their 20's age perceived social risk as more important than other age groups. In addition, potential tourists in their 20's showed more positive tourism attitudes than other age groups. As a result of analyzing differences according to job, it was found that the student group had higher social risk, tourism attitude, and tourism intention than other occupational groups. Based on the research results, it can help derive strategies to reduce tourists' perception of risk in special situations such as COVID-19 and contribute to academia.

The Effect of the Introduction Characteristics of Cloud Computing Services on the Performance Expectancy of Firms: Setting Up Innovativeness as the Moderator (클라우드 컴퓨팅 서비스의 도입특성이 기업의 인지된 기대성과에 미치는 영향: 기업의 혁신채택성향을 조절변수로)

  • Jae Su Lim;Jay In Oh
    • Information Systems Review
    • /
    • v.19 no.1
    • /
    • pp.75-100
    • /
    • 2017
  • Today, firms are constantly transforming and innovating to survive under the rapidly changing business environment. The introduction of cloud computing services has become popular throughout society as a whole and is expected to result in many changes and developments not only in firms and but also in the public sector subject to innovation. The purpose of this study is to investigate the effect of the characteristics of cloud computing services on the perceived expected performance according to innovativeness based on innovation diffusion theory. The results of the analysis of the data collected from this research are as follows. The convenience and understanding of individuals' work as well as the benefits of cloud computing services to them depend on the innovative trend of cloud computing services. Further, the expectations for personal benefit and those for organizational benefit of cloud computing services are different from each other. Leading firms in the global market have been actively engaged in the utilization of cloud computing services in the public sector as well as in private firms. In consideration of the importance of cloud computing services, using cloud computing services as the target of innovation diffusion research is important. The results of the study are expected to contribute to developing future research models for the diffusion of new technologies, such as big data, digital convergence, and Internet of Things.

A Study on Factors Affecting BigData Acceptance Intention of Agricultural Enterprises (농업 관련 기업의 빅데이터 수용 의도에 미치는 영향요인 연구)

  • Ryu, GaHyun;Heo, Chul-Moo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.1
    • /
    • pp.157-175
    • /
    • 2022
  • At this moment, a paradigm shift is taking place across all sectors of society for the transition movements to the digital economy. Various movements are taking place in the global agricultural industry to achieve innovative growth using big data which is a key resource of the 4th industrial revolution. Although the government is making various attempts to promote the use of big data, the movement of the agricultural industry as a key player in the use of big data, is still insufficient. Therefore, in this study, effects of performance expectations, effort expectations, social impact, facilitation conditions, based on the Unified Theory of Acceptance and Use of Technology(UTAUT), and innovation tendencies on the acceptance intention of big data were analyzed using the economic and practical benefits that can be obtained from the use of big data for agricultural-related companies as moderating variables. 333 questionnaires collected from agricultural-related companies were used for empirical analysis. The analysis results using SPSS v22.0 and Process macro v3.4 were found to have a significant positive (+) effect on the intention to accept big data by effort expectations, social impact, facilitation conditions, and innovation tendencies. However, it was found that the effect of performance expectations on acceptance intention was insignificant, with social impact having the greatest influence on acceptance intention and innovation tendency the least. Moderating effects of economic benefit and practical benefit between effort expectation and acceptance intention, moderating effect of practical benefit between social impact and acceptance intention, and moderating effect of economic benefit and practical benefit between facilitation condition and acceptance intention were found to be significant. On the other hand, it was found that economic benefits and practical benefits did not moderate the magnitude of the influence of performance expectations and innovation tendency on acceptance intention. These results suggest the following implications. First, in order to promote the use of big data by companies, the government needs to establish a policy to support the use of big data tailored to companies. Significant results can only be achieved when corporate members form a correct understanding and consensus on the use of big data. Second, it is necessary to establish and implement a platform specialized for agricultural data which can support standardized linkage between diverse agricultural big data, and support for a unified path for data access. Building such a platform will be able to advance the industry by forming an independent cooperative relationship between companies. Finally, the limitations of this study and follow-up tasks are presented.

Nuclear Terrorism and Global Initiative to Combat Nuclear Terrorism(GICNT): Threats, Responses and Implications for Korea (핵테러리즘과 세계핵테러방지구상(GICNT): 위협, 대응 및 한국에 대한 함의)

  • Yoon, Tae-Young
    • Korean Security Journal
    • /
    • no.26
    • /
    • pp.29-58
    • /
    • 2011
  • Since 11 September 2001, warnings of risk in the nexus of terrorism and nuclear weapons and materials which poses one of the gravest threats to the international community have continued. The purpose of this study is to analyze the aim, principles, characteristics, activities, impediments to progress and developmental recommendation of the Global Initiative to Combat Nuclear Terrorism(GICNT). In addition, it suggests implications of the GICNT for the ROK policy. International community will need a comprehensive strategy with four key elements to accomplish the GICNT: (1) securing and reducing nuclear stockpiles around the world, (2) countering terrorist nuclear plots, (3) preventing and deterring state transfers of nuclear weapons or materials to terrorists, (4) interdicting nuclear smuggling. Moreover, other steps should be taken to build the needed sense of urgency, including: (1) analysis and assessment through joint threat briefing for real nuclear threat possibility, (2) nuclear terrorism exercises, (3) fast-paced nuclear security reviews, (4) realistic testing of nuclear security performance to defeat insider or outsider threats, (5) preparing shared database of threats and incidents. As for the ROK, main concerns are transfer of North Korea's nuclear weapons, materials and technology to international terror groups and attacks on nuclear facilities and uses of nuclear devices. As the 5th nuclear country, the ROK has strengthened systems of physical protection and nuclear counterterrorism based on the international conventions. In order to comprehensive and effective prevention of nuclear terrorism, the ROK has to strengthen nuclear detection instruments and mobile radiation monitoring system in airports, ports, road networks, and national critical infrastructures. Furthermore, it has to draw up effective crisis management manual and prepare nuclear counterterrorism exercises and operational postures. The fundamental key to the prevention, detection and response to nuclear terrorism which leads to catastrophic impacts is to establish not only domestic law, institution and systems, but also strengthen international cooperation.

  • PDF

Characteristics and Implications of Sports Content Business of Big Tech Platform Companies : Focusing on Amazon.com (빅테크 플랫폼 기업의 스포츠콘텐츠 사업의 특징과 시사점 : 아마존을 중심으로)

  • Shin, Jae-hyoo
    • Journal of Venture Innovation
    • /
    • v.7 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • This study aims to elucidate the characteristics of big tech platform companies' sports content business in an environment of rapid digital transformation. Specifically, this study examines the market structure of big tech platform companies with a focus on Amazon, revealing the role of sports content within this structure through an analysis of Amazon's sports marketing business and provides an outlook on the sports content business of big tech platform companies. Based on two-sided market platform business models, big tech platform companies incorporate sports content as a strategy to enhance the value of their platforms. Therefore, sports content is used as a tool to enhance the value of their platforms and to consolidate their monopoly position by maximizing profits by increasing the synergy of platform ecosystems such as infrastructure. Amazon acquires popular live sports broadcasting rights on a continental or national basis and supplies them to its platforms, which not only increases the number of new customers and purchasing effects, but also provides IT solution services to sports organizations and teams while planning and supplying various promotional contents, thus creates synergy across Amazon's platforms including its advertising business. Amazon also expands its business opportunities and increases its overall value by supplying live sports contents to Amazon Prime Video and Amazon Prime, providing technical services to various stakeholders through Amazon Web Services, and offering Amazon Marketing Cloud services for analyzing and predicting advertisers' advertising and marketing performance. This gives rise to a new paradigm in the sports marketing business in the digital era, stemming from the difference in market structure between big tech companies based on two-sided market platforms and legacy global companies based on one-sided markets. The core of this new model is a business through the development of various contents based on live sports streaming rights, and sports content marketing will become a major field of sports marketing along with traditional broadcasting rights and sponsorship. Big tech platform global companies such as Amazon, Apple, and Google have the potential to become new global sports marketing companies, and the current sports marketing and advertising companies, as well as teams and leagues, are facing both crises and opportunities.

Comparative Analysis of COVID-19 Pandemic Crisis Response Capacities by Countries (코로나19 팬데믹 위기 대응 역량의 국가별 비교분석)

  • Yoon Hyeon Lee
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.25 no.2
    • /
    • pp.59-70
    • /
    • 2024
  • Objectives: The purpose of this study is to analyze each country's infectious disease response capacities and, based on this, find areas for improvement in Korea's infectious disease management response. Methods: First, the capacity to respond to the COVID-19 infectious disease was analyzed by country using the SPAR scores of 96 countries around the world released by WHO in 2022. Second, we analyzed each country's specific COVID-19 quarantine performance using Our World in Data and the Global Health Security Index (GHSI). Results: First, the quarantine intensity index on January 24, 2021 was the highest in the Southeast Asia branch at 67.6, which had strong quarantine measures, and the lowest at 44.5 in the Africa branch. As of December 31, 2022, the quarantine intensity index in Europe was significantly lowered to 11.6. Second, the factor that influenced the SPAR indicator on the total number of patients per million population was national laboratory (C4), p=.027, and the factor that influenced the total number of deaths per million population was infection prevention and control (C9), p=.005., Risk Communication and Community Participation (C10) p=.040. The influential factor on GDP per capita was infection prevention and control (C9) p=.009, and the influential factor on GHSI was infection prevention and control (C9) p=.002. Conclusion: The research findings indicate that it was difficult to find a correlation between the SPAR, which is each country's self-assessment of their infectious disease capacities, and the number of COVID-19 cases or the intensity of pandemic responses. However, mortality rates, as well as factors such as the Global Health Security Index (GHSI) and national income, appear to be somewhat influenced. For future improvements in infectious disease management and response in our country, it is necessary to develop pandemic strategies that can reduce socio-economic costs based on more scientific and reliable data like JEE or GHSI, especially in preparation for potential unknown emerging infectious diseases. Based on this, proactive decision-making led by a control tower of experts and effective health communication are also required to respond to public health crises at a national level.

Predicting Forest Gross Primary Production Using Machine Learning Algorithms (머신러닝 기법의 산림 총일차생산성 예측 모델 비교)

  • Lee, Bora;Jang, Keunchang;Kim, Eunsook;Kang, Minseok;Chun, Jung-Hwa;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.1
    • /
    • pp.29-41
    • /
    • 2019
  • Terrestrial Gross Primary Production (GPP) is the largest global carbon flux, and forest ecosystems are important because of the ability to store much more significant amounts of carbon than other terrestrial ecosystems. There have been several attempts to estimate GPP using mechanism-based models. However, mechanism-based models including biological, chemical, and physical processes are limited due to a lack of flexibility in predicting non-stationary ecological processes, which are caused by a local and global change. Instead mechanism-free methods are strongly recommended to estimate nonlinear dynamics that occur in nature like GPP. Therefore, we used the mechanism-free machine learning techniques to estimate the daily GPP. In this study, support vector machine (SVM), random forest (RF) and artificial neural network (ANN) were used and compared with the traditional multiple linear regression model (LM). MODIS products and meteorological parameters from eddy covariance data were employed to train the machine learning and LM models from 2006 to 2013. GPP prediction models were compared with daily GPP from eddy covariance measurement in a deciduous forest in South Korea in 2014 and 2015. Statistical analysis including correlation coefficient (R), root mean square error (RMSE) and mean squared error (MSE) were used to evaluate the performance of models. In general, the models from machine-learning algorithms (R = 0.85 - 0.93, MSE = 1.00 - 2.05, p < 0.001) showed better performance than linear regression model (R = 0.82 - 0.92, MSE = 1.24 - 2.45, p < 0.001). These results provide insight into high predictability and the possibility of expansion through the use of the mechanism-free machine-learning models and remote sensing for predicting non-stationary ecological processes such as seasonal GPP.