• Title/Summary/Keyword: global navigation satellite system

Search Result 533, Processing Time 0.025 seconds

Extension and Implementation of Iconic Stereotype for GNSS Application in the UML Class Diagram

  • Wang Bo;No, Hye-Min;Yoo, Cheol-Jung;Chang, Ok-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.136-138
    • /
    • 2003
  • UML cannot meet all the requirements offered in different software system for diverse application domain. GNSS (Global Navigation Satellite System) application domain is an especial environment that requires precise measurement and precision calculation of real-world geographical entities with the help of GPS (Global Position System) in both temporal and spatial factor. Therefore in the paper new extended iconic stereotypes for better modeling GNSS application in the UML Diagram are proposed, and the implementation of a program called StereotypeCreator, which is able to create iconic stereotypes used in one of the most popular visual modeling tools for software development, Rational Rose, will be also proposed.

  • PDF

Design of INS/GNSS/TRN Integrated Navigation Considering Compensation of Barometer Error (기압고도계 오차 보상을 고려한 INS/GNSS/TRN 통합항법 설계)

  • Lee, Jungshin;Sung, Changky;Park, Byungsu;Lee, Hyungsub
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.197-206
    • /
    • 2019
  • Safe aircraft requires highly reliable navigation information. The traditionally used inertial navigation system (INS) often displays faulty location information due to its innate errors. To overcome this, the INS/GNSS or INS/TRN integrated navigation can be used. However, GNSS is vulnerable to jamming and spoofing, while TRN can be degraded in the flat and repetitive terrains. In this paper, to improve the performance and ensure the high reliability of the navigation system, the INS/GNSS/TRN integrated navigation based on federated filter is designed. Master filter of the integrated navigation uses the estimates and covariances of two local filters - INS/GNSS and INS/TRN integrated filters. The local filters are designed with the EKF that is feedforward type and composed of the 17st state variables. And the INS/GNSS integrated navigation includes the barometer error compensation method. Finally, the proposed INS/GNSS/TRN integrated navigation is verified by vehicle and captive flight tests.

Analysis of Coarse Acquisition Code Generation Algorithm in GPS System (GPS 시스템의 C/A 부호 생성 알고리듬의 분석)

  • Zhang, Wei;Suh, Hee-Jong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.61-68
    • /
    • 2017
  • In this paper, the coarse acquisition code (C/A code), for civil navigation, of the ranging codes for Global Positioning System (GPS) is studied, simulated and analyzed by using Matlab. We can see with the simulation results that the correctness of the method and feasibility, which is at simulation platform to further study on the real environment of GPS signal, can be confirmed. With using this results, we think, the complexity of tracking the satellite signal environment can be captured, and the performance of satellite receiver will be improved.

A Precise Relative Positioning Method Based on Time-Differenced Carrier Phase Measurements from Low-Cost GNSS Receiver (저비용 GNSS 수신기를 이용한 반송파 위상 시각간 차분 측정치 기반의 정밀 상대위치 결정 기법)

  • Park, Kwi-Woo;Lee, DongSun;Park, Chansik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1846-1855
    • /
    • 2015
  • In this paper, a precise relative positioning with TD(time differenced) carrier phase measurements from a low-cost GNSS(Global Navigation Satellite System) receiver is proposed and analysed. The proposed method is using carrier phase measurement from a single GNSS receiver that reference receiver is not required and stand alone positioning is possible. TD operation removes the troublesome integer ambiguity resolution problem, and if the time interval is short, other error, such as, ionospheric, tropospheric delay and ephemeris error are effectively eliminated. The error analysis of the proposed method shows that a precise and positioning with carrier phase is possible. The implemented system is evaluated using a real car experiments. The results show that the horizontal positioning error was less than 3m during 10 minutes experiments, which is 4 times more precise than the results of normal code based absolute positioning.

A Design of the IMM Filter for Improving Position Error of the INS / GPS Integrated System (INS/GPS 통합 항법 시스템의 위치 오차 개선을 위한 IMM 필터 설계)

  • Baek, Seung-jun
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.221-227
    • /
    • 2019
  • In this paper, interacting multiple model (IMM) filter was designed that guarantees a stable navigation performance even in the unstable satellite navigation position. In order to design IMM filter in INS / GPS integrated navigation system, sub filter of the IMM filter is defined as Kalman filter. In the IMM filter configuration, two subfilters are determined. Each Kalman filter defines the six-teenth state composed of position, velocity, attitude, and sensor error from the INS error equation and the states additionally derived in case of the coloured measurement noise. In order to verify the performance of the proposed filter, we compared the performance how the filter works in the presence of arbitrary error in GPS navigation solution. The Monte Carlo simulation was performed 100 times and the results were compared with the root mean square(RMS). The results show that the proposed method is stable against errors and show fast convergence.

Georeferencing of GPR image data using HD map construction method (정밀 도로 지도 구축 방법을 이용한 GPR 영상 데이터 지오레퍼런싱)

  • Shin, Jinsoo;Won, Jonghyun;Lee, Seeyoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.507-513
    • /
    • 2021
  • GPR (Ground Penetrating RADAR) is a sensor that inspects the pavement state of roads, sinkholes, and underground pipes. It is widely used in road management. MMS (Mobile Mapping System) creates a detailed and accurate road map of the road surface and its surroundings. If both types of data are built in the same area, it is efficient to construct both ground and underground spatial information at the same time. In addition, since it is possible to grasp the road and important facilities around the road, the location of underground pipelines, etc. without special technology, an intuitive understanding of the site is also possible, which is a useful tool in managing the road or facilities. However, overseas equipment to which this latest technology is applied is expensive and does not fit the domestic situation. LiDAR (Light Detection And Raging) and GNSS/INS (Global Navigation Satellite System / Inertial Navigation System) were synchronized in order to replace overseas developed equipment and to secure original technology to develop domestic equipment in the future, and GPR data was also synchronized to the same GNSS/INS. We developed software that performs georeferencing using the location and attitude information from GNSS/INS at the time of acquiring synchronized GPR data. The experiments were conducted on the road site by dividing the open sky and the non-open sky. The road and surrounding facilities on the ground could be easily checked through the 3D point cloud data acquired through LiDAR. Georeferenced GPR data could also be viewed with a 3D viewer along with point cloud data, and the location of underground facilities could be easily and quickly confirmed through GPR data.

Hole Navigation System Development in Drilling Rig (천공기의 천공위치 안내 시스템 개발)

  • Kim, Je-Dong;Kang, Byung-Soo;Hahm, Young-Gook;Yoo, Jae-Sung;Lee, Duck-Hwan;Cho, Jae-Sang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.783-784
    • /
    • 2016
  • 천공위치 안내 시스템은 천공작업 Hole의 정확한 위치를 추적하는 시스템이다. 천공작업의 정확성과 안정성, 그리고 장비 조작의 용이성을 위하여 범지구 위성 항법 시스템(Global navigation satellite system, GNSS)을 이용하여 지표면의 천공위치를 찾아주는 안내 시스템을 연구 개발하였다.

GNSS를 이용한 계기비행절차($RNAV_{GNSS}$) 설계 기술동향

  • Kim, Pil-Su
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.5 no.1
    • /
    • pp.93-103
    • /
    • 2007
  • 3차원의 공간을 비행하는 항공기의 항행은 조종사가 직접 지상의 지형지물을 참조하며 비행하는 시각비행과 지상의 항행안전시설로부터 무선신호를 받아 비행하는 계기비행으로 구분되어 발전되었다. 현재 계기비행을 수행하기 위한 계기비행절차 수립에 기반이 되는 항행안전무선시설은 기존의 VOR(VHF Omni-directional Range), ILS(Instrument Landing System) 등의 지상기반 항행안전무선시설에서 GNSS (Global Navigation Satellite System)를 이용한 위성기반 항행으로 전환을 목표로 하고 있으며 항행체제 또한 기존의 Fix to Fix 항행체제에서 RNAV(Area Navigation) 체제로 전환되고 있는 추세이다. 계기비행절차는 항공기가 활주로를 이륙하여 항로로 진입하기 위한 계기출발절차(SID), 항로절차(Enroute), 항로에서 목적 공항의 지정된 활주로에 설정된 접근절차(Approach)로 인도하는 도착절차(STAR), 지정된 활주로에 착륙하기 위한 접근절차로 구분될 수 있으며 본문에서는 GNSS를 기반으로 하는 RNAV 절차(RNAVGNSS)에 대한 개괄적인 소개, 설계요건 및 RNAVGNSS 계기비행절차를 성공적으로 이행하기 위한 절차이행모델, RNAVGNSS 절차 수립에 중요하게 고려해야할 사항 등에 대하여 소개하도록 한다.

  • PDF

A Study of GNSS Performance Enhancement using Correction Estimation and Visible Satellites Selection (보정량 추정 및 가시위성 선정 기법을 이용한 위성항법 성능개선 연구)

  • Bong, Jae Hwan;Jeong, Seong-Kyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.995-1002
    • /
    • 2022
  • Global Navigation Satellite System(GNSS) is a convenient system that acquires position and time information of a receiver if only satellite signals can be received anywhere in the world. However navigation signals include errors and a position error occurs according to the reception state of the signal. Also, a position error is affected by the geometric arrangement of the satellites. Therefore a receiver position performance varies by the number and status of visible satellites The condition of satellite signals is not good when the satellite rises or sets and the position change of receiver occurs when the signal is blocked by an obstacle such as a building in the urban area. In this paper, we proposed methods to improve the GNSS performance by using pseudorange correction method estimating the correction amount and the visible satellites selection method. By applying the proposed methods to an environment in which the number of visible satellites changes variously, the performance enhancement was verified.

Analysis of Frequency of Seismogenic Ionospheric Disturbance by using GNSS Signal (GNSS 신호를 이용한 지진에 의한 전리층 교란의 주파수 분석)

  • Kim, Bu-gyeom;Kang, Seon-ho;Han, Deok-hwa;Song, June-sol;Kee, Chang-don
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.616-622
    • /
    • 2018
  • Energy which is released by a huge earthquake can reach the ionosphere and induce disturbances. Those disturbances can detected by analyzing the global navigation satellite system (GNSS) satellite's signal. For detecting those disturbances, band-pass filter is generally used. Therefore, it is important to select proper pass band that can contain disturbance's frequency. In this paper, we analyzed a frequency of the ionospheric disturbances which are induced by earthquake by using GNSS signal. For analyzing seismogenic ionospheric disturbances, we calculated a geometry free combination of carrier phase to obtain a ionospheric delay. After that, the fast Fourier transform was applied to the 1 mHz high-passed ionospheric delay. As a result of analyzing disturbances, the frequency band of earlier disturbances was 4.5 mHz~11mHz and the representative frequency was 5.7 mHz. The frequency band of subsequent disturbances was 6 mHz~10 mHz and the representative frequency was 7.3 mHz.