• Title/Summary/Keyword: global navigation satellite system

Search Result 536, Processing Time 0.025 seconds

Integrated Navigation Filter Design for Trains Considering the Mounting Misalignment Error of the IMU

  • Chae, Myeong Seok;Cho, Seong Yun;Shin, Kyung Ho
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.3
    • /
    • pp.179-187
    • /
    • 2021
  • To estimate the location of the train, we consider an integrated navigation system that combines Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS). This system provides accurate navigation results in open sky by combining only the advantages of both systems. However, since measurement update cannot be performed in GNSS signal blocked areas such as tunnels, mountain, and urban areas, pure INS is used. The error of navigation information increases in this area. In order to reduce this problem, the train's Non-Holonomic Constraints (NHC) information can be used. Therefore, we deal with the INS/GNSS/NHC integrated navigation system in this paper. However, in the process of installing the navigation system on the train, a Mounting Misalignment Error of the IMU (MMEI) inevitably occurs. In this case, if the NHC is used without correcting the error, the navigation error becomes even larger. To solve this problem, a method of easily estimating the MMEI without an external device is introduced. The navigation filter is designed using the Extended Kalman Filter (EKF) by considering the MMEI. It is assumed that there is no vertical misalignment error, so only the horizontal misalignment error is considered. The performance of the integrated navigation system according to the presence or absence of the MMEI and the estimation performance of the MMEI according to the method of using NHC information are analyzed based on simulation. As a result, it is confirmed that the MMEI is accurately estimated by using the NHC information together with the GNSS information, and the performance and reliability of the integrated navigation system are improved.

A BOC Signal Acquisition Scheme Based on Recombination of Sub-correlation Functions with Cyclostationarity (Cyclostationarity를 갖는 부 상관함수들의 재조합에 기반을 둔 BOC 신호 획득 기법)

  • Lee, Young-Po;Baek, Jee-Hyeon;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7C
    • /
    • pp.459-466
    • /
    • 2011
  • This paper addresses the problem in the acquisition of binary offset carrier (BOC) signals employed in global navigation satellite systems, which is caused by the multiple side-peaks of the BOC autocorrelation function. We first observe that the side-peaks arise due to the fact that the BOC autocorrelation is made up of the sum of the sub-correlations shaped irregularly, and then, propose a novel acquisition scheme based on a recombination of the sub-correlations with cyclostationarity. The proposed scheme is demonstrated to remove the side-peaks completely for any type of BOC signal and to provide a performance improvement over the conventional schemes in terms of the mean acquisition time.

Development of On-board Computer Module for Formation Flying and Cluster Operation Nano-satellites (초소형 위성의 편대 및 군집 운용을 위한 모듈형 온보드 컴퓨터 개발)

  • Oh, Hyungjik;Kim, Do-hyun;Park, Ki-Yun;Lee, Ju-in;Jung, Insun;Lee, Seonghwan;Park, Jae-Pil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.728-737
    • /
    • 2019
  • In this study, the minimized on-board computer (OBC) module for integrated navigation is developed, which provides satellites' relative position information in formation flying and cluster operation situations. The scalability is considered to apply the user-selected wireless communication module and Global Positioning System (GPS) receiver for navigation, while considering to meet the structural design standard of nano-satellites. As a result of the product development and production, the processing speed of integrated navigation and real-time data synchronization is satisfied for cluster operation nano-satellites by using micro controller unit (MCU). From a heat/vacuum, vibration and radiation test, the OBC was confirmed to be operated in space environments. From these results, a mass production system of OBC was made which is a key part of development on satellite formation flying and cluster/constellation missions that the community demands are increasing.

Performance Analysis of the GPS Receiver according to the Bandwidths of a PLL Loop Filter in a Launch Vehicle Simulation (발사체 시나리오에서 PLL 루프필터의 대역폭에 따른 GPS 수신기의 성능 분석)

  • Moon, Ji-Hyeon;Kwon, Bung-Moon;Shin, Yong-Sul;Choi, Hyung-Don
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.64-72
    • /
    • 2013
  • This paper describes the analysis of the tracking and navigation performance of a GPS receiver in a launch vehicle simulation when the carrier tracking loop is designed as a 3rd order phase-locked loop with variable bandwidths. There are differences of tracking and navigation performance according to the variable bandwidths under the dynamics condition. When the bandwidth is set to narrow, the GPS receiver could not track the satellite signals so that the navigation information could not be calculated.

GNSS NLOS Signal Classifier with Successive Correlation Outputs using CNN

  • Sangjae, Cho;Jeong-Hoon, Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • The problem of classifying a non-line-of-sight (NLOS) signal in a multipath channel is important to improve global navigation satellite system (GNSS) positioning accuracy in urban areas. Conventional deep learning-based NLOS signal classifiers use GNSS satellite measurements such as the carrier-to-noise-density ratio (CN_0), pseudorange, and elevation angle as inputs. However, there is a computational inefficiency with use of these measurements and the NLOS signal features expressed by the measurements are limited. In this paper, we propose a Convolutional Neural Network (CNN)-based NLOS signal classifier that receives successive Auto-correlation function (ACF) outputs according to a time-series, which is the most primitive output of GNSS signal processing. We compared the proposed classifier to other DL-based NLOS signal classifiers such as a multi-layer perceptron (MLP) and Gated Recurrent Unit (GRU) to show the superiority of the proposed classifier. The results show the proposed classifier does not require the navigation data extraction stage to classify the NLOS signals, and it has been verified that it has the best detection performance among all compared classifiers, with an accuracy of up to 97%.

Analysis of Double-Differenced Code-Pseudorange Noise Characteristics of GNSS Receiver Combinations using Zero-Baseline Test (영기선 테스트를 이용한 GNSS 수신기 조합별 코드의사거리 이중차분 잡음 특성 분석)

  • Bong-Gyu Park;Kwan-Dong Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.3
    • /
    • pp.245-256
    • /
    • 2024
  • Following the introduction of civilian navigation, the commercial Global Navigation Satellite System (GNSS) receivers' market has been expanding in various fields such as autonomous driving and smart cities. With improved receiver performance and widespread use of GNSS, the configurations of base and rover receivers are becoming more complex. As a result, user must consider combinations of base stations with different qualities, costs, and performances. To address these issues, we conducted zero-baseline tests to analyze the double-differenced code-pseudorange noise of various receiver combinations, ranging from low- to high-cost. The results showed that the noise varied depending on the receiver combination. Notably, receivers from the same manufacturer exhibited similar noise and positioning errors despite significant price differences. We also found that the double-differenced noise of all receiver combinations was correlated with the Carrier-to-Noise Density Ratio (C/N0), the satellite elevation angle, and the Doppler shift, and it did not perfectly follow a normal distribution. Further analysis based on Modified Allan Deviation (MDEV) showed that different types of noise were observed for each receiver combination and the double-differenced noise and positioning errors have similar statistical characteristics. From this study, the importance of receiver combinations and their various characteristics can be better understood.

Monitoring a steel building using GPS sensors

  • Casciati, Fabio;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.349-363
    • /
    • 2011
  • To assess the performance of a structure requires the measurement of global and relative displacements at critical points across the structure. They should be obtained in real time and in all weather condition. A Global Navigation Satellite System (GNSS) could satisfy the last two requirements. The American Global Position System (GPS) provides long term acquisitions with sampling rates sufficient to track the displacement of long period structures. The accuracy is of the order of sub-centimetres. The steel building which hosts the authors' laboratory is the reference case-study within this paper. First a comparison of data collected by GPS sensor units with data recorded by tri-axial accelerometers is carried out when dynamic vibrations are induced in the structure by movements of the internal bridge-crane. The elaborations from the GPS position readings are then compared with the results obtained by a Finite Element (FE) numerical simulation. The purposes are: i) to realize a refinement of the structural parameters which characterize the building and ii) to outline a suitable way for processing GPS data toward structural monitoring.

Comparison of ILS and GBAS Through Flight Test in Taean Aerodrome and Kimpo Airport (태안 비행장과 김포공항 비행시험을 통한 ILS와 GBAS 비교)

  • Koo, Bon-Soo;Kim, Woo-Ri-Ul;Ju, Yo-Han;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.192-198
    • /
    • 2015
  • Since instrument landing system currently operating in most airports is operating in single-pass, it is not possible to accommodate a large number of aircraft. A satellite navigation system GBAS using a GNSS has been developed to solve these limitation when air traffic increases. GBAS is better than the ILS in position accuracy and capable of landing through multiple paths rather than a single path, the aircraft can perform varied landing procedures. In this paper, after we established a virtual ILS procedures at Taean Airfield in which ILS installation is impossible due to environmental requirements and airspace restrictions, flight test was performed by Cessna Skyhawk 172 to compare the virtual ILS procedures and curved approach procedure and the advantage of curved approach was confirmed.

A GNSS Code Tracking Scheme Based in Slope Difference of Correlation Outputs (상관 함수의 기울기 차에 기반한 GNSS의 부호 추적 기법)

  • Yoo, Seung-Soo;Yoo, Seung-Hwan;Chong, Da-Hae;Ahn, Sang-Ho;Yoon, Seok-Ho;Kim, Sun-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6C
    • /
    • pp.505-511
    • /
    • 2008
  • The global navigation satellite system (GNSS) is using a direct sequence/spread spectrum (DS/SS) modulation. In order to recover the information data, the DS/SS system first performs a two-step synchronization process: acquisition and tracking. The acquisition process adjusts the phase difference between the received and locally generated acquisition sequences within ${\pm}T_c/2$ or less, where $T_c$ is the chip period. The tracking process performs fine synchronization. In this paper, we focus on the tracking issue. The single delta delay locked loop($\Delta$-DLL) is the optimal tracking scheme for a GNSS in the absence of multipath signals, where $\Delta$ means the spacing between the early and late correlation time offset. In the multipath environments, however, the $\Delta$-DLL suffers from huge estimation bias(denoted by $\beta$) caused by distorted correlation values. Although some modified schemes such as a $\Delta$-DLL with a narrow $\Delta$ and a double delta DLL (${\Delta}^{(2)}$-DLL) were proposed to reduce the estimation bias, they cannot remove the estimation bias completely and need more accurate acquisition process. This paper proposes a novel tracking scheme that can dramatically reduce the estimation bias, using the maximum slope change among the correlation outputs.

Performance Analysis and Design of Variable Bandwidth Multi-Mode GNSS Receiver for Anti-Jamming (항재밍용 가변대역 다중모드 위성항법수신기 설계 및 성능분석)

  • Ahn, Seung-Gwan;Lee, Sang-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.133-139
    • /
    • 2010
  • GNSS receiver which uses the weak satellite signal is very vulnerable to the intentional jamming or non-intentional electromagnetic interference. It is a very simple method among the use method of GNSS receiver to vary tracking loop bandwidth of satellite signal appropriately as the jamming signal level. In this paper, this anti-jamming performance is experimented and analyzed in the laboratory and the anechoic chamber by the GNSS simulator to generate the satellite signal and the jamming signal generator to generate the jamming signal.