• Title/Summary/Keyword: global minimum

Search Result 597, Processing Time 0.023 seconds

Moving Target Tracking Algorithm based on the Confidence Measure of Motion Vectors (움직임 벡터의 신뢰도에 기반한 이동 목표물 추적 기법)

  • Lee, Jin-Seong;Lee, Gwang-Yeon;Kim, Seong-Dae
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.2
    • /
    • pp.160-168
    • /
    • 2001
  • Change detection using difference picture has been used to detect the location of moving targets and to track them. This method needs the assumption of static camera, and the global motion compensation is required in case of a moving camera. This paper suggests a method for finding a minimum bounding rectangles(MBR) of moving targets in the image sequences using moving region detection, especially with a moving camera. If the global motion parameter is inaccurately estimated, the estimated locations of targets will be accurate either To alleviate this problem, we introduce the concept of the confidence measure and achieve more accurate estimation of global motion. Experimental results show that the proposed method successfully removes background region and extracts MBRs of the targets. Even with a moving camera, the new global motion estimation algorithm performs more precise]y and it reduces the background compensation errors of change detection.

  • PDF

Precision Evaluation of Recent Global Geopotential Models based on GNSS/Leveling Data on Unified Control Points

  • Lee, Jisun;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.2
    • /
    • pp.153-163
    • /
    • 2020
  • After launching the GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) which obtains high-frequency gravity signal using a gravity gradiometer, many research institutes are concentrating on the development of GGM (Global Geopotential Model) based on GOCE data and evaluating its precision. The precision of some GGMs was also evaluated in Korea. However, some studies dealt with GGMs constructed based on initial GOCE data or others applied a part of GNSS (Global Navigation Satellite System) / Leveling data on UCPs (Unified Control Points) for the precision evaluation. Now, GGMs which have a higher degree than EGM2008 (Earth Gravitational Model 2008) are available and UCPs were fully established at the end of 2019. Thus, EIGEN-6C4 (European Improved Gravity Field of the Earth by New techniques - 6C4), GECO (GOCE and EGM2008 Combined model), XGM2016 (Experimental Gravity Field Model 2016), SGG-UGM-1, XGM2019e_2159 were collected with EGM2008, and their precisions were assessed based on the GNSS/Leveling data on UCPs. Among GGMs, it was found that XGM2019e_2159 showed the minimum difference compared to a total of 5,313 points of GNSS/Leveling data. It is about a 1.5cm and 0.6cm level of improvement compare to EGM2008 and EIGEN-6C4. Especially, the local biases in the northern part of Gyeonggi-do, Jeju island shown in the EGM2008 was removed, so that both mean and standard deviation of the difference of XGM2019e_2159 to the GNSS/Leveling are homogeneous regardless of region (mountainous or plain area). NGA (National Geospatial-Intelligence Agency) is currently in progress in developing EGM2020 and XGM2019e_2159 is the experimentally published model of EGM2020. Therefore, it is expected that the improved GGM will be available shortly so that it is necessary to verify the precision of new GGMs consistently.

Understanding Climate Change over East Asia under Stabilized 1.5 and 2.0℃ Global Warming Scenarios (1.5/2.0℃ 지구온난화 시나리오 기반의 동아시아 기후변화 분석)

  • Shim, Sungbo;Kwon, Sang-Hoon;Lim, Yoon-Jin;Yum, Seong Soo;Byun, Young-Hwa
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.391-401
    • /
    • 2019
  • This study first investigates the changes of the mean and extreme temperatures and precipitation in East Asia (EA) under stabilized 1.5℃ and 2℃ warming conditions above preindustrial levels provided by HAPPI project. Here, five model with 925 members for 10-year historical period (2006~2015) and 1.5/2.0℃ future warming scenarios (2091~2100) have been used and monthly based data have been analyzed. The results show that the spatial distribution fields over EA and domain averaged variables in HAPPI 1.5/2.0℃ hindcast simulations are comparable to observations. It is found that the magnitude of mean temperature warming in EA and Korea is similar to the global mean, but for extreme temperatures local higher warming trend for minimum temperature is significant. In terms of precipitation, most subregion in EA will see more increased precipitation under 1.5/2.0℃ warming compared to the global mean. These attribute for probability density function of analyzed variables to get wider with increasing mean values in 1.5/2.0℃ warming conditions. As the result of vulnerability of 0.5℃ additional warming from 1.5 to 2.0℃, 0.5℃ additional warming contributes to the increases in extreme events and especially the impact over South Korea is slightly larger than EA. Therefore, limiting global warming by 0.5℃ can help avoid the increases in extreme temperature and precipitation events in terms of intensity and frequency.

Climate Change and Coping with Vulnerability of Agricultural Productivity (기후변화와 농업생산의 전망과 대책)

  • 윤성호;임정남;이정택;심교문;황규홍
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.220-237
    • /
    • 2001
  • Over the 20th century global temperature increase has been 0.6$^{\circ}C$. The globally averaged surface temperature is projected to increase by 1.4 to 5.8$^{\circ}C$ over the period 1990 to 2100. Nearly all land areas will have higher maximum temperature and minimum temperature, and fewer cold days and frost days. More intense precipitation events will take plate over many areas. Over most mid-latitude continental interiors will have increased summer continental drying and associated risk of drought. By 2100, if the annual surface temperature increase is 3.5$^{\circ}C$, we will have 15.9$^{\circ}C$ from 12.4$^{\circ}C$ at present. Also the annual precipitation will range 1,118-2,447 mm from 972-1,841 mm at present in Korea. Consequently the average crop periods for summer crops will be 250 days that prolonged 32 days than at present. In the case of gradual increase of global warming, an annual crop can be adapted to the changing climate through the selection of filial generations in breeding process. The perennial crops such as an apple should be shifted the chief producing place to northern or high latitude areas where below 13.5$^{\circ}C$ of the annual surface temperature. If global warming happens suddenly over the threshold atmospheric greenhouse gases, then all ecosystems will have tremendous disturbance. Agricultural land-use plan, which state that farmers decide what to plant, based on their climate-based advantages. Therefore, farmers will mitigate possible negative imparts associated with the climate change. The farmers will have application to use agricultural meteorological information system, and agricultural long-range weather forecast system for their agroecosystems management. The ideal types of crops under $CO_2$ increase and climate change conditions are considered that ecological characteristics need indispensable to accomplish the sustainable agriculture as the diversification of genetic resources from yield-oriented to biomass-oriented characteristics with higher potential of $CO_2$ absorption and primary production. In addition, a heat-and-cold tolerance, a pest resistance, an environmental adaptability, and production stability should be also incorporated collectively into integrated agroecosystem.

  • PDF

Surface Energy Balance at Sejong Station, King George Island, Antarctica (남극 세종기지의 에너지 평형)

  • Kim, Jhoon;Cho, Hi Ku;Jung, Yeon Jin;Lee, Yun Gon;Lee, Bang Yong
    • Atmosphere
    • /
    • v.16 no.2
    • /
    • pp.111-124
    • /
    • 2006
  • This study examines seasonal variability of the surface energy balance at the King Sejong Station, Antarctica, using measurements and estimates of the components related to the balance for the period of 1996 to 2004. Annual average of downward shortwave radiation at the surface is 81 $Wm^{-2}$ which is 37% of the extraterrestrial value, with the monthly maximum of 188 $Wm^{-2}$ in December and the minimum of 8 $Wm^{-2}$ in June. These values are relatively smaller than those at other stations in Antarctica, which can be attributed to higher cloudy weather conditions in Antarctic front zone. Surface albedo varies between ~0.3 in the austral summer season and ~0.6 in the winter season. As a result, the net shortwave radiation ranges from 117 $Wm^{-2}$ down to 3 $Wm^{-2}$ with annual averages of 43 $Wm^{-2}$. Annual average of the downward longwave radiation shows 278 $Wm^{-2}$, ranging from 263 $Wm^{-2}$ in August to 298 $Wm^{-2}$ in January. The downward longwave radiation is verified to be dependent strongly on the air temperature and specific humidity, accounting for 74% and 79% of the total variance in the longwave radiation, respectively. The net longwave radiation varies between 25 $Wm^{-2}$ and 40 $Wm^{-2}$ with the annual averages of 30 $Wm^{-2}$. Accordingly, the annual average energy balance is dominated by radiative warming of a positive net all-wave radiation from September to next March and radiative cooling of a negative net all-wave radiation from April to August. The net all-wave radiative energy gain and loss at the surface is mostly balanced by turbulent flux of sensible and latent heat. The soil heat flux is of negligible importance in the surface energy balance.

Global Fitting Functions for Kinetics of Fe-Selective Chlorination in Ilmenite and Successive Chlorination of Beneficiated TiO2 (일메나이트 중 철의 선택적 염화와 선광된 TiO2의 추가 염화반응에 대한 글로벌 피팅함수)

  • Chung, Dong-Kyu;Won, Yong Sun;Kim, Yong-Ha;Jung, Eun-Jin;Song, Duk-Yong
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.412-424
    • /
    • 2019
  • Global fitting functions for Fe-selective chlorination in ilmenite($FeTiO_2$) and successive chlorination of beneficiated $TiO_2$ are proposed and validated based on a comparison with experimental data collected from the literature. The Fe-selective chlorination reaction is expressed by the unreacted shrinking core model, which covers the diffusion-controlling step of chlorinated Fe gas that escapes through porous materials of beneficiated $TiO_2$ formed by Fe-selective chlorination, and the chemical reaction-controlling step of the surface reaction of unreacted solid ilmenite. The fitting function is applied for both chemical controlling steps of the unreacted shrinking core model. The validation shows that our fitting function is quite effective to fit with experimental data by minimum and maximum values of determination coefficients of $R^2$ as low as 0.9698 and 0.9988, respectively, for operating parameters such as temperature, $Cl_2$ pressure, carbon ratio and particle size that change comprehensively. The global fitting functions proposed in this study are expressed simply as exponential functions of chlorination rate(X) vs. time(t), and each of them are validated by a single equation for various reaction conditions. There is therefore a certain practical merit for the optimal process design and performance analysis for field engineers of chlorination reactions of ilmenite and $TiO_2$.

Dual Mode Feedback-Controlled Cycling System for Upper Limb Rehabilitation of Children with Cerebral Palsy

  • Cho, Seung-Yeon;Kim, Jihun;Seo, Seong-Won;Kim, Sung-Gyung;Kim, Jaehyo
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.231-236
    • /
    • 2019
  • Background/Objectives: This paper proposes a dual mode feedback-controlled cycling system for children with spastic cerebral palsy to rehabilitate upper extremities. Repetitive upper limb exercise in this therapy aims to both reduce and analyze the abnormal torque patterns of arm movements in three- dimensional space. Methods/Statistical analysis: We designed an exercycle robot which consists of a BLDC motor, a torque sensor, a bevel gear and bearings. Mechanical structures are customized for children of age between 7~13 years old and induces reaching and pulling task in a symmetric circulation. The shafts and external frames were designed and printed using 3D printer. While the child performs active/passive exercise, angular position, angular velocity, and relative torque of the pedal shaft are measured and displayed in real time. Findings: Experiment was designed to observe the features of a cerebral palsy child's exercise. Two children with bilateral spastic cerebral palsy participated in the experiment and conducted an active exercise at normal speed for 3 sets, 15 seconds for each. As the pedal reached 90 degrees and 270 degrees, the subject showed minimum torque, in which the child showed difficulty in the pulling task of the cycle. The passive exercise assisted the child to maintain a relatively constant torque while visually observing the movement patterns. Using two types of exercise enabled the child to overcome the abnormal torque measured in the active data by performing the passive exercise. Thus, this system has advantage not only in allowing the child to perform the difficult task, which may contribute in improving the muscle strength and endurance and reducing the spasticity but also provide customizable system according to the child's motion characteristic. Improvements/Applications: Further study is needed to observe how passive exercise influences the movement characteristics of an active motion and how customized experiment settings can optimize the effect of pediatric rehabilitation for spastic cerebral palsy.

Comparative Study of Implicit and Explicit Solvation Models for Probing Tryptophan Side Chain Packing in Proteins

  • Yang, Chang-Won;Pak, Young-Shang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.828-832
    • /
    • 2012
  • We performed replica exchange molecular dynamics (REMD) simulations of the tripzip2 peptide (betahairpin) using the GB implicit and TI3P explicit solvation models. By comparing the resulting free energy surfaces of these two solvation model, we found that the GB solvation model produced a distorted free energy map, but the explicit solvation model yielded a reasonable free energy landscape with a precise location of the native structure in its global free energy minimum state. Our result showed that in particular, the GB solvation model failed to describe the tryptophan packing of trpzip2, leading to a distorted free energy landscape. When the GB solvation model is replaced with the explicit solvation model, the distortion of free energy shape disappears with the native-like structure in the lowest free energy minimum state and the experimentally observed tryptophan packing is precisely recovered. This finding indicates that the main source of this problem is due to artifact of the GB solvation model. Therefore, further efforts to refine this model are needed for better predictions of various aromatic side chain packing forms in proteins.

Precise Orbit Determination Based on the Unscented Transform for Optical Observations

  • Hwang, Hyewon;Lee, Eunji;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.249-264
    • /
    • 2019
  • In this study, the precise orbit determination (POD) software is developed for optical observation. To improve the performance of the estimation algorithm, a nonlinear batch filter, based on the unscented transform (UT) that overcomes the disadvantages of the least-squares (LS) batch filter, is utilized. The LS and UT batch filter algorithms are verified through numerical simulation analysis using artificial optical measurements. We use the real optical observation data of a low Earth orbit (LEO) satellite, Cryosat-2, observed from optical wide-field patrol network (OWL-Net), to verify the performance of the POD software developed. The effects of light travel time, annual aberration, and diurnal aberration are considered as error models to correct OWL-Net data. As a result of POD, measurement residual and estimated state vector of the LS batch filter converge to the local minimum when the initial orbit error is large or the initial covariance matrix is smaller than the initial error level. However, UT batch filter converges to the global minimum, irrespective of the initial orbit error and the initial covariance matrix.

A Parallel Loop Scheduling Algorithm on Multiprocessor System Environments (다중프로세서 시스템 환경에서 병렬 루프 스케쥴링 알고리즘)

  • 이영규;박두순
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.3
    • /
    • pp.309-319
    • /
    • 2000
  • The purpose of a parallel scheduling under a multiprocessor environment is to carry out the scheduling with the minimum synchronization overhead, and to perform load balance for a parallel application program. The processors calculate the chunk of iteration and are allocated to carry out the parallel iteration. At this time, it frequently accesses mutually exclusive global memory so that there are a lot of scheduling overhead and bottleneck imposed. And also, when the distribution of the parallel iteration in the allocated chunk to the processor is different, the different execution time of each chunk causes the load imbalance and badly affects the capability of the all scheduling. In the paper. we investigate the problems on the conventional algorithms in order to achieve the minimum scheduling overhead and load balance. we then present a new parallel loop scheduling algorithm, considering the locality of the data and processor affinity.

  • PDF