As the influence of online reviews on consumer decision-making increases, concerns about review manipulation are also increasing. Fake reviews or review manipulations are emerging as an important problem by posting untrue reviews in order to increase sales volume, causing the consumer's reverse choice, and acting at a high cost to the society as a whole. Most of the related prior studies have focused on predicting review manipulation through data mining methods, and research from a consumer perspective is insufficient. However, since the possibility of manipulation of reviews perceived by consumers can affect the usefulness of reviews, it can provide important implications for online word-of-mouth management regardless of whether it is false or not. Therefore, in this study, we analyzed whether there is a difference between the review evaluated by the consumer as being manipulated and the general review, and verified whether the manipulated review negatively affects the review usefulness. For empirical analysis, 34,711 online book reviews on the LibraryThing website were analyzed using multilevel logistic regression analysis and Poisson regression analysis. As a result of the analysis, it was found that there were differences in product level, reviewer level, and review level factors between reviews that consumers perceived as being manipulated and reviews that were not. In addition, manipulated reviews have been shown to negatively affect review usefulness.
Social media-based communication has become crucial part of our personal and official lives. Therefore, it is no surprise that social media sentiment analysis has emerged an important way of detecting potential customers' sentiment trends for all kinds of companies. However, social media sentiment analysis suffers from huge number of sentiment features obtained in the process of conducting the sentiment analysis. In this sense, this study proposes a novel method by using Bayesian Network. In this model MBFS (Markov Blanket-based Feature Selection) is used to reduce the number of sentiment features. To show the validity of our proposed model, we utilized online review data from Yelp, a famous social media about restaurant, bars, beauty salons evaluation and recommendation. We used a number of benchmarking feature selection methods like correlation-based feature selection, information gain, and gain ratio. A number of machine learning classifiers were also used for our validation tasks, like TAN, NBN, Sons & Spouses BN (Bayesian Network), Augmented Markov Blanket. Furthermore, we conducted Bayesian Network-based what-if analysis to see how the knowledge map between target node and related explanatory nodes could yield meaningful glimpse into what is going on in sentiments underlying the target dataset.
Researchers are making contradictory claims through the concept of superstars and long tails about how the development of IT technology affects demand distribution. Unlike previous studies that focused on changes in demand from a macro point of view, this study explored whether the relationship between a company's marketing activities and consumer response differs depending on the product location (i.e., superstar vs. long tail) from a micro point of view. Based on the marketing mix framework, hypotheses were developed based on the relevant literature. In the case of empirical analysis, 2,835 daily data from 63 Korean films were tested using the quantile regression method. As a result of the analysis, it was found that the influence of marketing mix factors on sales varies depending on the location of the product. Specifically, the appeal breadth of the film and the effect of owned media are enhanced in superstar products, and the effect of acquisition media in long-tail products is enhanced and the negative effects of competition are mitigated. Unlike previous studies that focused on macroscopic changes in demand distribution, this study suggested marketing activities suitable for practitioners through microscopic analysis.
With the development of IT, mobile apps and the expansion of contactless services due to COVID-19, "smart orders" have recently been activated in the food and beverage service. Even in recent years, when sales have declined, the number of orders made by smart orders has been steadily increasing, and this ordering method can accumulate customer data, enabling effective customized services in the future. In the present study, satisfaction with smart orders and continuous use intention were studied based on the technology acceptance model (TAM). And it focused on whether there is a difference in personality when using smart orders. For this purpose, a survey was conducted on 317 smart order users, and the hypothesis was verified by structural equation model analysis. Perceived benefits had a significant effect on satisfaction; also, satisfaction had a significant effect on continuous use intention. There is a significant disparity between introvert and extrovert type. As a consequence, the introverted type has a greater intention to perceive usefulness of smart orders and continuously use them. These results suggest that the customer's personality type should be considered in future customer customization strategies.
Journal of The Korean Association For Science Education
/
v.26
no.2
/
pp.200-211
/
2006
The purpose of this study was to analyze Korean middle school student achievement in environmental science based on the TIMSS 2003 (Trends in International Mathematics and Science Study), a student comparison of 46 participating nations. Korea ranked the fourth with a mean score of 554 in environmental science. However, all 3 environment science topics assessed in TIMSS are not included in the Korean science curriculum through 8th grade, even though they are included in most other participating nations' curricula. The average percent correct of items was analyzed according to the main topic, the item type and the cognitive domain. Items that showed differences between the average percent correct of Korea and the international average as well as differences between the average percent correct of boys and girls were further analyzed. Results revealed that Korean students performed better than the international average, especially in 'use and conservation of natural resources', multiple-choice items, and items requiring 'factual knowledge'. Also, male students demonstrated significantly higher achievement than female students. On the other hand, Korean students showed relatively lower achievement in constructed-response items, items that contained content they had not learned in science lessons and items requiring descriptions of the uses and effect of science and technology. Moreover, Korean student lacked understanding about acid rain, global warming, and ozone layer destruction. Korean female students showed relatively lower environmental conceptions and lower performance on items requiring data analysis than Korean male students. On the basis of these results, this study suggested that topics of environmental science be included in the science curriculum and taught in the science classroom to help middle school students more fully comprehend environmental issues.
Wung Chul Jin;Seung Ik Baek;Yu Feng Sun;Xiang Dan Jin
Journal of Service Research and Studies
/
v.14
no.2
/
pp.18-36
/
2024
As interest in ESG has been increased, it is easy to find papers that empirically study that a company's ESG activities have a positive impact on the company's performance. However, research on what ESG activities companies should actually engage in is relatively lacking. Accordingly, this study systematically classifies ESG activities of companies and seeks to provide insight to companies seeking to plan new ESG activities. This study analyzes how Chinese manufacturing companies perform ESG activities based on their dynamic capabilities in the global economy and how they differ in their activities. This study used the ESG annual reports of 151 Chinese manufacturing listed companies on the Shanghai & Shenzhen Stock Exchange and ESG indicators of China Securities Index Company (CSI) as data. This study focused on the following three research questions. The first is to determine whether there are any differences in ESG activities between companies with high ESG scores (TOP-25) and companies with low ESG scores (BOT-25), and the second is to determine whether there are any changes in ESG activities over a 10-year period (2010-2019), focusing only on companies with high ESG scores. The results showed that there was a significant difference in ESG activities between high and low ESG scorers, while tracking the year-to-year change in activities of the top-25 companies did not show any difference in ESG activities. In the third study, social network analysis was conducted on the keywords of E/S/G. Through the co-concurrence matrix technique, we visualized the ESG activities of companies in a four-quadrant graph and set the direction for ESG activities based on this.
NA KYOUNG IM;HYUNKEUN JIN;GYUNDO PAK;YOUNG-GYU PARK;KYEONG OK KIM;YONGHAN CHOI;YOUNG HO KIM
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
/
v.29
no.2
/
pp.101-115
/
2024
The ocean heatwave is emerging as a major issue due to global warming, posing a direct threat to marine ecosystems and humanity through decreased food resources and reduced carbon absorption capacity of the oceans. Consequently, the prediction of ocean heatwaves in the vicinity of the Korean Peninsula is becoming increasingly important for marine environmental monitoring and management. In this study, an LSTM model was developed to improve the underestimated prediction of ocean heatwaves caused by the coarse vertical grid system of the Korean Peninsula Ocean Prediction System. Based on the results of ocean heatwave predictions for the Korean Peninsula conducted in 2023, as well as those generated by the LSTM model, the performance of heatwave predictions in the East Sea, Yellow Sea, and South Sea areas surrounding the Korean Peninsula was evaluated. The LSTM model developed in this study significantly improved the prediction performance of sea surface temperatures during periods of temperature increase in all three regions. However, its effectiveness in improving prediction performance during periods of temperature decrease or before temperature rise initiation was limited. This demonstrates the potential of the LSTM model to address the underestimated prediction of ocean heatwaves caused by the coarse vertical grid system during periods of enhanced stratification. It is anticipated that the utility of data-driven artificial intelligence models will expand in the future to improve the prediction performance of dynamical models or even replace them.
Recently, deep learning has shown high performance in various applications such as pattern analysis and image classification. Especially known as a difficult task in the field of machine learning research, stock market forecasting is an area where the effectiveness of deep learning techniques is being verified by many researchers. This study proposed a deep learning Convolutional Neural Network (CNN) model to predict the direction of stock prices. We then used the feature selection method to improve the performance of the model. We compared the performance of machine learning classifiers against CNN. The classifiers used in this study are as follows: Logistic Regression, Decision Tree, Neural Network, Support Vector Machine, Adaboost, Bagging, and Random Forest. The results of this study confirmed that the CNN showed higher performancecompared with other classifiers in the case of feature selection. The results show that the CNN model effectively predicted the stock price direction by analyzing the embedded values of the financial data
Objective: To investigate the incidence of microvascular myocardial ischemia in diabetic patients without obstructive coronary artery disease (CAD) and its relationship with angina. Materials and Methods: Diabetic patients and an intermediate-to-high pretest probability of CAD were prospectively enrolled. Non-diabetic patients but with an intermediate-to-high pretest probability of CAD were retrospectively included as controls. The patients underwent dynamic computed tomography-myocardial perfusion imaging (CT-MPI) and coronary computed tomography angiography (CCTA) to quantify coronary stenosis, myocardial blood flow (MBF), and extracellular volume (ECV). The proportion of patients with microvascular myocardial ischemia, defined as any myocardial segment with a mean MBF ≤ of 100 mL/min/100 mL, in patients without obstructive CAD (Coronary Artery Disease-Reporting and Data System [CAD-RADS] grade 0-2 on CCTA) was determined. Various quantitative parameters of the patients with and without diabetes without obstructive CAD were compared. Multivariable analysis was used to determine the association between microvascular myocardial ischemia and angina symptoms in diabetic patients without obstructive CAD. Results: One hundred and fifty-two diabetic patients (mean age: 59.7 ± 10.7; 77 males) and 266 non-diabetic patients (62.0 ± 12.3; 167 males) were enrolled; CCTA revealed 113 and 155 patients without obstructive CAD, respectively. For patients without obstructive CAD, the mean global MBF was significantly lower for those with diabetes than for those without (152.8 mL/min/100 mL vs. 170.4 mL/min/100 mL, P < 0.001). The mean ECV was significantly higher for diabetic patients (27.2% vs. 25.8%, P = 0.009). Among the patients without obstructive CAD, the incidence of microvascular myocardial ischemia (36.3% [41/113] vs. 10.3% [16/155], P < 0.001) and interstitial fibrosis (69.9% [79/113] vs. 33.3% [8/24], P = 0.001) were significantly higher in diabetic patients than in the controls. The presence of microvascular myocardial ischemia was independently associated with angina symptoms (adjusted odds ratio = 3.439, P = 0.037) in diabetic patients but without obstructive CAD. Conclusion: Dynamic CT-MPI + CCTA revealed a high incidence of microvascular myocardial ischemia in diabetic patients without obstructive CAD. Microvascular myocardial ischemia is strongly associated with angina.
Social media is divided into Owned Media, operated by companies according to information sources, and Earned Media, which third parties produce contents. Social media research developing the logic that brand-related content in social media increases awareness of potential customers and positively changes brand attitudes, resulting in increased sales and business performance. However, there are limitations in previous researches that can not fully explain the difference of media synergy effect according to the information source of social media. it is very important for the consumer to integrate media management because consumers are more likely to choose appropriate media information for the information needed at each decision making stage. The purpose of this study is to analyze the effect of eWOM of review site and social media (owned media and earned media) on movie sales. To do this, we collected 3,589 review data from films released in 2017. The results of the study showed that eWOM of review site, social media (owned media and earned media) had a positive effect on movie sales. However, it was found that the effect of moderating eWOM of review site was different between the owned media and the earend media.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.