• Title/Summary/Keyword: global data

Search Result 6,612, Processing Time 0.042 seconds

ACCURATE ESTIMATION OF GLOBAL LATENT HEAT FLUX USING MULTI-SATELLITE DATA

  • Tomita Hiroyuki;Kubota Masahisa
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.14-17
    • /
    • 2005
  • Global latent heat flux data sets are crucial for many studies such as those related to air-sea interaction and climate variation. Currently, various global latent heat flux data sets are constructed using satellite data. Japanese Ocean Flux data sets with Use of Remote sensing Observations (J-OFURO) includes one of the satellite-derived global latent heat flux data (Kubota et aI., 2000). In this study, we review future development of J-OFURO global latent heat flux data set. In particular, we investigate usage of multi-satellite data for estimating accurate global latent heat flux. Accurate estimation of surface wind speeds over the global ocean is one of key factors for the improved estimation of global latent heat flux. First, we demonstrate improvement of daily wind speed estimation using multi-satellites data from microwave radiometers and scatterometers such as DMSP/SSMI, ERS/AMI, QuikSCAT/SeaWinds, AqualAMSR-E, ADEOS2/AMSR etc. Next, we demonstrate improvement of global latent heat flux estimation using the wind speed data derived from multi-satellite data.

  • PDF

MODELING OF HUMAN INDUCED CO2 EMISSION BY ASSIMILATING GIS AND SOC10-ECONIMICAL DATA TO SYSTEM DYNAMICS MODEL FOR OECD AND NON-OECD COUNTRIES

  • Goto, Shintaro
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.3-8
    • /
    • 1998
  • Using GIS and socio-economical data the relationship between human activities and global environmental change Is Analysed from the view point of food productivity and CO2 emission. Under the assumption that the population problem, the food problem and global warming due to energy consumption can be stabilized through managing land use, impacts of human activities such as consumption of food, energy and timber on global environment changes, and global population capacity are Analysed using developed system dynamics model in the research. In the model the world is divided into two groups: OECD countries and the others. Used global land use data set Is land cover map derived from satellite data, and potential distribution of arable land is estimated by the method of Clamor and Solomon which takes into consideration spatial distribution of climate data such as precipitation and evapotranspiration. In addition, impacts of CO2 emission from human activities on food production through global warming are included in the model as a feedback. The results of the analysis for BaU scenario and Toronto Conference scenario are similar to the results of existing models. From the result of this study, the human habitability in 2020 is 8 billion people, and CO2 emission in 2020 based on BaU Scenario and on Toronto Scenario is 1.7 and 1.2 times more than the 1986's respectively. Improving spatial resolution of the model by using global data to distribute the environmental variables and sauce-economical indices is left for further studies.

  • PDF

Comparative analysis of the global solar horizontal irradiation in typical meteorological data (표준기상데이터의 일사량 데이터 비교 분석)

  • Yoo, Ho-Chun;Lee, Kwan-Ho;Kang, Hyun-Gu
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.102-109
    • /
    • 2009
  • The research on meteorological data in Korea has been carried out but without much consistency and has been limited to some areas only. Of relatively more importance has been the area in the utilization of the solar energy, however, the measurement of the global solar horizontal irradiation has been quite limited. In the current study, the actually measured value of the global solar horizontal irradiation from the meteorological data and the theoretically calculated value of the global solar horizontal irradiation from the cloud amount will be analyzed comparatively. The method of analysis will employ the standard meteorological data drafted by the Korean Solar Energy Society, the standard meteorological data from the presently used simulation program and the corresponding results have been compared with the calculated value of the global solar horizontal irradiation from the cloud amount. The results of comparing the values obtained from MBE(Mean Bias Error), RMSE(Root Mean Squares for Error), t-Statistic methods and those from each of the standard meteorological data show that the actually measured value of the meteorological data which have been converted into standard meteorological data with the help of the ISO TRY method give the monthly average value of the global solar horizontal irradiation. These values compared with the monthly average value from the IWEC from the Department of Energy of the USA show that the value of the global solar horizontal irradiation in the USA is quite similar. In the case of the values obtained from calculation from the cloud amount, the weather data provided by TRNSYS, except only slight difference, which means that the actually measured values of the global solar horizontal irradiation are significant. This goes to show that in the case of Korea, the value of the global solar horizontal irradiation provided by the Korea Meteorological Administration is will be deemed correct.

Generation of Simulated Geospatial Images from Global Elevation Model and SPOT Ortho-Image

  • Park, Wan Yong;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.3
    • /
    • pp.217-223
    • /
    • 2014
  • With precise sensor position, attitude element, and imaging resolution, a simulated geospatial image can be generated. In this study, a satellite image is simulated using SPOT ortho-image and global elevation data, and the geometric similarity between original and simulated images is analyzed. Using a SPOT panchromatic image and high-density elevation data from a 1/5K digital topographic map data an ortho-image with 10-meter resolution was produced. The simulated image was then generated by exterior orientation parameters and global elevation data (SRTM1, GDEM2). Experimental results showed that (1) the agreement of the image simulation between pixel location from the SRTM1/GDEM2 and high-resolution elevation data is above 99% within one pixel; (2) SRTM1 is closer than GDEM2 to high-resolution elevation data; (3) the location of error occurrence is caused by the elevation difference of topographical objects between high-density elevation data generated from the Digital Terrain Model (DTM) and Digital Surface Model (DSM)-based global elevation data. Error occurrences were typically found at river boundaries, in urban areas, and in forests. In conclusion, this study showed that global elevation data are of practical use in generating simulated images with 10-meter resolution.

A study on analysis to time series data by using vegetation surface roughness index

  • Konda, Asako;Kajiwara, Koji;Honda, Yoshiaki
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.706-708
    • /
    • 2003
  • Index for difference of vegetation surface roughness (BSI: Bi-directional reflectance factor structure Index) was proposed in our laboratory (Konda et al., 2000). It is thought that BSI is useful vegetation index for vegetation monitoring. If it can be applied for global covered satellite data, detailed monitoring of global vegetation can be expected. However, in order to apply BSI to global satellite data, there are some problems to be solved. In this study, in order to make global data set of BSI, it arranged about processing of the global satellite data for making BSI data sets.

  • PDF

Analysis and Calculation of Global Hourly Solar Irradiation Based on Sunshine Duration for Major Cities in Korea (국내 주요도시의 일조시간데이터를 이용한 시간당전일사량 산출 및 분석)

  • Lee, Kwan-Ho;Sim, Kwang-Yeal
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.16-21
    • /
    • 2010
  • Computer simulation of buildings and solar energy systems are being used increasingly in energy assessments and design. This paper discusses the possibility of using sunshine duration data instead of global hourly solar irradiation (GHSI) data for localities with abundant data on sunshine duration. For six locations in South Korea where global radiation is currently measured, the global radiation was calculated using Sunshine Duration Radiation Model (SDRM), compared and analyzed. Results of SDRM has been compared with the measured data on the coefficients of determination (R2), root-mean-square error (RMSE) and mean bias error (MBE). This study recommends the use of sunshine duration based irradiation models if measured solar radiation data is not available.

Comparative Study of Functional Magnetic Resonance Imaging by Global Scaling Analysis (Global Scaling 분석방법에 따른 기능적 자기공명영상의 비교 연구)

  • Yoo, Dong-Soo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.1
    • /
    • pp.26-31
    • /
    • 2006
  • Purpose : To evaluate the effect of global scaling analysis on brain activation for sensory and motor functional MR imaging study. Materials and methods : Four normal subjects without abnormal neurological history were included. Arm extension-flexion movement was used for motor function and 1KHz pure tone stimulation was used for auditory function. Functional magnetic resonance imaging was performed at 3T MRI (GE, Milwaukee, USA) using BOLD-EPI technique and SPM2 was employed for data analysis. On data analysis, the brain activation images were obtained with and without global scaling by fixing other parameters such as motion correction and realignment. Results : The difference in brain activation between no scaling and global scaling was not large in case of right upper extremity movement (p<0.000001). For auditory test, brain activation with global scaling showed larger activation than that of without global scaling (p<0.05). Conclusion : A caution must be taken into account when analyzing functional imaging data with global scaling especially for functional study of small local BOLD signal change.

  • PDF

Comparison of Local and Global Fitting for Exercise BP Estimation Using PTT (PTT를 이용한 운동 중 혈압 예측을 위한 Local과 Global Fitting의 비교)

  • Kim, Chul-Seung;Moon, Ki-Wook;Eom, Gwang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2265-2267
    • /
    • 2007
  • The purpose of this work is to compare the local fitting and global fitting approaches while applying regression model to the PTT-BP data for the prediction of exercise blood pressures. We used linear and nonlinear regression models to represent the PTT-BP relationship during exercise. PTT-BP data were acquired both under resting state and also after cycling exercise with several load conditions. PTT was calculated as the time between R-peak of ECG and the peak of differential photo-plethysmogram. For the identification of the regression models, we used local fitting which used only the resting state data and global fitting which used the whole region of data including exercise BP. The results showed that the global fitting was superior to the local fitting in terms of the coefficient of determination and the RMS (root mean square) error between the experimental and estimated BP. The nonlinear regression model which used global fitting showed slightly better performance than the linear one (no significant difference). We confirmed that the wide-range of data is required for the regression model to appropriately predict the exercise BP.

Site-Specific Error-Cross Correlation-Informed Quadruple Collocation Approach for Improved Global Precipitation Estimates

  • Alcantara, Angelika;Ahn Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.180-180
    • /
    • 2023
  • To improve global risk management, understanding the characteristics and distribution of precipitation is crucial. However, obtaining spatially and temporally resolved climatic data remains challenging due to sparse gauge observations and limited data availability, despite the use of satellite and reanalysis products. To address this challenge, merging available precipitation products has been introduced to generate spatially and temporally reliable data by taking advantage of the strength of the individual products. However, most of the existing studies utilize all the available products without considering the varying performances of each dataset in different regions. Comprehensively considering the relative contributions of each parent dataset is necessary since their contributions may vary significantly and utilizing all the available datasets for data merging may lead to significant data redundancy issues. Hence, for this study, we introduce a site-specific precipitation merging method that utilizes the Quadruple Collocation (QC) approach, which acknowledges the existence of error-cross correlation between the parent datasets, to create a high-resolution global daily precipitation data from 2001-2020. The performance of multiple gridded precipitation products are first evaluated per region to determine the best combination of quadruplets to be utilized in estimating the error variances through the QC approach and computation of merging weights. The merged precipitation is then computed by adding the precipitation from each dataset in the quadruplet multiplied by each respective merging weight. Our results show that our approach holds promise for generating reliable global precipitation data for data-scarce regions lacking spatially and temporally resolved precipitation data.

  • PDF

A Study of Monitoring Measurement using Global Positioning Digital Datalogger System for Railway Structures (GPS를 내장한 위치추적 데이터로거 시스템의 철도 계측 적용성 연구)

  • Lee, Seong-Won
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2002-2007
    • /
    • 2010
  • The objective of this study is the developement monitoring measurement using global positioning digital datalogger system for monitoring measurement of railway construction sites. For the replacement of current passive data communication, Global positioning digital datalogger system using active communication is studied for the first time with in a country. Therefore data communication method and analyzing program of automatic measurement data is developed for the global positioning automatic digital datalogger system. The results of this study will be using real time automatic monitoring measurement of railway structures.

  • PDF