• 제목/요약/키워드: global climate

검색결과 1,888건 처리시간 0.025초

주요국의 2030 온실가스 감축목표에 대한 비교분석과 시사점 (Comparative Analysis of the 2030 GHG Reduction Target for Eleven Major Countries and Its Implications)

  • 오진규
    • 한국기후변화학회지
    • /
    • 제9권4호
    • /
    • pp.357-368
    • /
    • 2018
  • The Paris Agreement, adopted in 2015, requires global mitigation actions by all countries, whether they are developed or developing countries. All member countries prepared and communicated a greenhouse gas reduction target, formally called the Intended Nationally Determined Contribution (INDC). There has been some concern regarding whether the INDCs communicated are sufficient to achieve the emissions reduction needed to hold the increase in global temperature to $2^{\circ}C$ above pre-industrial levels. How to address this emissions gap in an equitable and fair manner remains controversial. Beginning in the year 2023, global stocktaking under the Paris Agreement will be performed by the Conference of the Parties to assess progress towards temperature goals. The present study, based on various composite indicators reflecting equity, fairness, ability and efficiency, analyzed the GHG reduction targets of eleven major countries and the ambitiousness of these targets. Employing share indicators and comparative ratio indicators (resulting in eight composite indicators), this study showed that when share indicators are applied, Korea's appropriate reduction requirement rate is relatively low at 1~2%. However, when comparative ratio indicators are applied, Korea's appropriate reduction requirement rate increases dramatically to 6~11%. In a similar vein, when share indicators are applied, Korea's 2030 target is very ambitious compared to other countries, while the opposite is seen with comparative ratio indicators. This strongly suggests that Korea needs to apply more share indicators than comparative ratio indicators when discussing the equitable and ambitious role of Korea in the climate debate.

한국 경기만의 기후 변화에 따른 해수 물리적 특성 및 해수면 영향과 적응 대책 (Variability of Sea Water Characteristics and Sea Levels Due to Climate Change and Appropriate Adaptation Strategies in Gyeonggi Bay)

  • 이수아
    • 해양환경안전학회지
    • /
    • 제29권2호
    • /
    • pp.98-105
    • /
    • 2023
  • 세계 5대 갯벌해역으로 유명한 한국 서해 경기만의 기후변화 영향을 파악하고, 기후변화 영향을 최소화하기 위한 적응방안 연구하였다. 경기만의 기후변화 영향으로 2100년에 수온은 1.2 ℃ 증가하고, 염분이 1.1 PSU 감소하며, 해수면은 35.2 cm 상승하는 것으로 예측되었다. 또한 해수면 상승의 효과로 150.5 km2의 해안지역이 침수될 것으로 예상되었다. 기후변화로 인한 경기만 생태환경 영향을 최소화하기 위한 적응대책으로는 1) 경기만 자체 자연환경의 적응능력 유지를 위한 지원, 2) 생물 서식지 확보를 위한 인간 활동 조정 등 두가지 방안이 제시되었다.

지역기후모델을 이용한 상세계절예측시스템 구축 및 겨울철 예측성 검증 (Construction of the Regional Prediction System using a Regional Climate Model and Validation of its Wintertime Forecast)

  • 김문현;강현석;변영화;박수희;권원태
    • 대기
    • /
    • 제21권1호
    • /
    • pp.17-33
    • /
    • 2011
  • A dynamical downscaling system for seasonal forecast has been constructed based on a regional climate model, and its predictability was investigated for 10 years' wintertime (December-January-February; DJF) climatology in East Asia. Initial and lateral boundary conditions were obtained from the operational seasonal forecasting data, which are realtime output of the Global Data Assimilation and Prediction System (GDAPS) at Korea Meteorological Administration (KMA). Sea surface temperature was also obtained from the operational forecasts, i.e., KMA El-Nino and Global Sea Surface Temperature Forecast System. In order to determine the better configuration of the regional climate model for East Asian regions, two sensitivity experiments were carried out for one winter season (97/98 DJF): One is for the topography blending and the other is for the cumulus parameterization scheme. After determining the proper configuration, the predictability of the regional forecasting system was validated with respect to 850 hPa temperature and precipitation. The results showed that mean fields error and other verification statistics were generally decreased compared to GDAPS, most evident in 500 hPa geopotential heights. These improved simulation affected season prediction, and then HSS was better 36% and 11% about 850 hPa temperature and precipitation, respectively.

한반도 지역 관측 기후변화 고찰 (A Review of Observed Climate Change in Korean Peninsula)

  • 허창회;이민희;박태원;이승민
    • 한국기후변화학회지
    • /
    • 제2권4호
    • /
    • pp.221-235
    • /
    • 2011
  • 이 논문에서는 우리나라의 기후변화를 연구한 기존 논문 결과를 정리했다. 필요한 경우, 주변 국가 및 전지구 기후변화를 연구한 논문도 참고했다. 현재까지 축적된 우리나라 기상관측 자료를 분석한 연구를 종합해 보면, 지난 100년간 한반도에 나타난 기온상승은 자연적 변화 범위를 넘어선 것으로 판단된다. 특히, 전구 평균 해수면 온도상승보다 큰 한반도 주변 해역의 온도상승과 연관되어 우리나라 강수량이 많아졌고, 접근하는 태풍 활동도 강해졌다. 이들 기상 요소뿐 아니라 대규모 대기순환장의 변화가 한반도와 주변지역의 기후에 영향을 끼쳐서 여름 몬순인 장마와 겨울 몬순인 한파의 시공간적 특성에 변화를 가져왔다. 이 연구에서는 짧은 준비기간과 지면의 한계, 그리고 저자들의 한정된 지식으로 인하여 관련된 모든 연구를 정리하지 못했지만, 향후 연구자들이 우리나라와 주변지역 기후변화 연구를 하는 데 있어서 도움을 줄 것으로 기대한다.

Northward expansion trends and future potential distribution of a dragonfly Ischnura senegalensis Rambur under climate change using citizen science data in South Korea

  • Shin, Sookyung;Jung, Kwang Soo;Kang, Hong Gu;Dang, Ji-Hee;Kang, Doohee;Han, Jeong Eun;Kim, Jin Han
    • Journal of Ecology and Environment
    • /
    • 제45권4호
    • /
    • pp.313-327
    • /
    • 2021
  • Background: Citizen science is becoming a mainstream approach of baseline data collection to monitor biodiversity and climate change. Dragonflies (Odonata) have been ranked as the highest priority group in biodiversity monitoring for global warming. Ischnura senegalensis Rambur has been designated a biological indicator of climate change and is being monitored by the citizen science project "Korean Biodiversity Observation Network." This study has been performed to understand changes in the distribution range of I. senegalensis in response to climate change using citizen science data in South Korea. Results: We constructed a dataset of 397 distribution records for I. senegalensis, ranging from 1980 to 2020. The number of records sharply increased over time and space, and in particular, citizen science monitoring data accounted for the greatest proportion (58.7%) and covered the widest geographical range. This species was only distributed in the southern provinces until 2010 but was recorded in the higher latitudes such as Gangwon-do, Incheon, Seoul, and Gyeonggi-do (max. Paju-si, 37.70° latitude) by 2020. A species distribution model showed that the annual mean temperature (Bio1; 63.2%) and the maximum temperature of the warmest month (Bio5; 16.7%) were the most critical factors influencing its distribution. Future climate change scenarios have predicted an increase in suitable habitats for this species. Conclusions: This study is the first to show the northward expansion in the distribution range of I. senegalensis in response to climate warming in South Korea over the past 40 years. In particular, citizen science was crucial in supplying critical baseline data to detect the distribution change toward higher latitudes. Our results provide new insights on the value of citizen science as a tool for detecting the impact of climate change on ecosystems in South Korea.

한국기상학회 기후역학 분야 학술 발전 현황 (Academic Development Status of Climate Dynamics in Korean Meteorological Society)

  • 안순일;예상욱;서경환;국종성;김백민;김대현
    • 대기
    • /
    • 제33권2호
    • /
    • pp.125-154
    • /
    • 2023
  • Since the Korean Meteorological Society was organized in 1963, the climate dynamics fields have been made remarkable progress. Here, we documented the academic developments in the area of climate dynamics performed by members of Korean Meteorological Society, based on studies that have been published mainly in the Journal of Korean Meteorological Society, Atmosphere, and Asia-Pacific Journal of Atmospheric Sciences. In these journals, the fundamental principles of typical ocean-atmosphere climatic phenomena such as El Niño, Madden-Julian Oscillation, Pacific Decadal Oscillation, and Atlantic Multi-decadal Oscillation, their modeling, prediction, and its impact, are being conducted by members of Korean Meteorological Society. Recently, research has been expanded to almost all climatic factors including cryosphere and biosphere, as well as areas from a global perspective, not limited to one region. In addition, research using an artificial intelligence (AI), which can be called a cutting-edge field, has been actively conducted. In this paper, topics including intra-seasonal and Madden-Julian Oscillations, East Asian summer monsoon, El Niño-Southern Oscillation, mid-latitude and polar climate variations and some paleo climate and ecosystem studies, of which driving mechanism, modeling, prediction, and global impact, are particularly documented.

SSP 시나리오에 따른 CMIP6 GCM 기반 미래 극한 가뭄 전망 (Projected Future Extreme Droughts Based on CMIP6 GCMs under SSP Scenarios)

  • 김송현;남원호;전민기;홍은미;오찬성
    • 한국농공학회논문집
    • /
    • 제66권4호
    • /
    • pp.1-15
    • /
    • 2024
  • In recent years, climate change has been responsible for unusual weather patterns on a global scale. Droughts, natural disasters triggered by insufficient rainfall, can inflict significant social and economic consequences on the entire agricultural sector due to their widespread occurrence and the challenge in accurately predicting their onset. The frequency of drought occurrences in South Korea has been rapidly increasing since 2000, with notably severe droughts hitting regions such as Incheon, Gyeonggi, Gangwon, Chungbuk, and Gyeongbuk in 2015, resulting in significant agricultural and social damage. To prepare for future drought occurrences resulting from climate change, it is essential to develop long-term drought predictions and implement corresponding measures for areas prone to drought. The Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report outlines a climate change scenario under the Shared Socioeconomic Pathways (SSPs), which integrates projected future socio-economic changes and climate change mitigation efforts derived from the Coupled Model Intercomparison Project 6 (CMIP6). SSPs encompass a range of factors including demographics, economic development, ecosystems, institutions, technological advancements, and policy frameworks. In this study, various drought indices were calculated using SSP scenarios derived from 18 CMIP6 global climate models. The SSP5-8.5 scenario was employed as the climate change scenario, and meteorological drought indices such as the Standardized Precipitation Index (SPI), Self-Calibrating Effective Drought Index (scEDI), and Standardized Precipitation Evapotranspiration Index (SPEI) were utilized to analyze the prediction and variability of future drought occurrences in South Korea.

국가온실가스 인벤토리 구축 기본절차(IPCC 지침)에 대한 조사 연구 (Survey Study on Basic Procedures for Establishment of National Greenhouse Gas Inventory (IPCC Guidelines))

  • 백천현;유종훈;김호균
    • 산업공학
    • /
    • 제22권4호
    • /
    • pp.317-328
    • /
    • 2009
  • For a comprehensive understanding of human impact on a change of the global climate, it is necessary to obtain reliable information on man-induced fluxes of greenhouse gases (GHGs) into the atmosphere. Intergovernmental Panel on Climate Change (IPCC) guidelines (IPCC 1996, IPCC 2000, IPCC2006) provide the methods and procedures of estimating the national GHG emission inventories. Particularly, IPCC 2006 contains new chapter of key conceptions uncertainties, including the types of uncertainties and assessment methods of uncertainties in GHG emission inventories. In this paper, a compact and clear survey on volume 1 of IPCC 2006, which contains the general information on inventory compilation, uncertainty and guidance on the choice of methods, and QC/QA, is given with emphasis on uncertainty analysis.

Potential of regression models in projecting sea level variability due to climate change at Haldia Port, India

  • Roshni, Thendiyath;K., Md. Sajid;Samui, Pijush
    • Ocean Systems Engineering
    • /
    • 제7권4호
    • /
    • pp.319-328
    • /
    • 2017
  • Higher prediction efficacy is a very challenging task in any field of engineering. Due to global warming, there is a considerable increase in the global sea level. Through this work, an attempt has been made to find the sea level variability due to climate change impact at Haldia Port, India. Different statistical downscaling techniques are available and through this paper authors are intending to compare and illustrate the performances of three regression models. The models: Wavelet Neural Network (WNN), Minimax Probability Machine Regression (MPMR), Feed-Forward Neural Network (FFNN) are used for projecting the sea level variability due to climate change at Haldia Port, India. Model performance indices like PI, RMSE, NSE, MAPE, RSR etc were evaluated to get a clear picture on the model accuracy. All the indices are pointing towards the outperformance of WNN in projecting the sea level variability. The findings suggest a strong recommendation for ensembled models especially wavelet decomposed neural network to improve projecting efficiency in any time series modeling.

Research Perspectives for Developing Seawater Intrusion Indicators in Changing Environments with Case Studies of Korean Coastal Aquifers: A Review

  • Chang, Sun Woo;Kim, Il Hwan
    • 대한토목학회논문집
    • /
    • 제44권4호
    • /
    • pp.465-482
    • /
    • 2024
  • The global use of groundwater in coastal areas has increased. Events such as seawater intrusion (SWI) are expected to increase along with the acceleration of natural disasters owing to environmental changes such as climate change, resulting in large-scale damage worldwide. Current trends in the research of coastal groundwater and related natural disasters include testing and verifying technologies using major case studies from individual countries. We identified global research trends in coastal groundwater, related these trends to changing environments and climate, and confirmed the qualitative and quantitative growth of these studies. This study describes the theoretical background and techniques for coastal groundwater analysis and details regional-scale SWI indicators based on analytical and numerical studies. This review highlights recent technologies that consider uncertainty and promotes discussions on field data obtained using new technologies. Finally, the research findings and trends for a regional coastal aquifer in Korea are discussed to describe recent SWI approaches for groundwater resources.