• Title/Summary/Keyword: global circulation

Search Result 229, Processing Time 0.028 seconds

Numerical analysis of the blood flow in coronary artery combining CFD method with the vascular system modeling (혈관계 시스템 모델과 CFD의 결합을 통한 관상동맥 내 혈류의 수치적 해석)

  • Shim Eun Bo;Park Myung Soo;Ko Hyung Jong;Kim Kyung Moon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.152-157
    • /
    • 1999
  • For the simulation of the blood flow in coronary artery, the system modeling of coronary hemodynamics is combined with CFD technique. The blood flow in coronary artery interacts with the global coronary circulation. Especially in case of the coronary artery with stenosis, the interaction plays an important role in the hemodynamics of the circulation. In this study we present a combined numerical approach using both the CFD technique for flow simulation and the global system model of coronary circulation. We use a lumped parameter model for the global simulation of coronary circulation whereas the finite element method is employed to compute the viscous flow field in stenosed coronary artery, The time variation of the pressure drop due to stenosis is obtained from the proposed numerical method. Numerical results shows that the flow resistance and pressure drop due to stenosis has a relatively large value in systole.

  • PDF

Modeling of Ocean Circulation in the Neighboring Seas of Korean Peninsula from Global Ocean Circulation Model (전구 해수순환 수치모형에 의한 한반도 주변의 순환 모사)

  • Choi Bung Ho;Choi Young Jin;Kim Cheol Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.4
    • /
    • pp.241-257
    • /
    • 2004
  • Global prognostic models based on NCOM(NCAR CSM Ocean Model) of NCAR which is generic from Bryan-Cox-Semtner model are established to study the ocean circulation in the neighboring seas of Korean peninsula. The model domain covers areas from $80.6{^\circ}S~88.6{^\circ}N$in meridional direction and the vertical water column is divided into 15 levels taking enhanced grid resolution of $0.3^\circ$ around Korean peninsula. Island option is used for 22 islands to simulate inshore circulation by hole-relaxation method and the restart hydrographic data are taken from NCAR(1998) CSM model that has been run for 300 years. The wind stress data are taken from Choi et al. (2002). Based on the model results, circulation patterns in the NW Pacific and global oceans are investigated. Volume transports calculated at five straits in the neighboring seas of Korean peninsula are compared with the results from Choi et al. (2002) and other observed data.

Numerical Experiment of Environmental Change in the East China Sea under Climate Change (기후변화에 따른 동중국해 해양 순환 변화 예측에 대한 수치 실험 연구)

  • Min, Hong Sik;Kim, Cheol-Ho
    • Ocean and Polar Research
    • /
    • v.34 no.4
    • /
    • pp.431-444
    • /
    • 2012
  • We simulated and compared present and future ocean circulation in the East China Sea using an East Asia Regional Ocean model. Mean climate states for 1990~1999 and 2030~2039 were used as surface conditions for simulations of present and future ocean circulation, which were derived from the simulations of three different global climate models, ECHAM5-MPI, GFDL-CM2.0 and MIROC3.2_hires, for the 20th century and those of 21st century as projected by the IPCC SRES A1B. East Asia Regional Ocean model simulated the detailed patterns of temperature, salinity and current fields under present and future climate conditions and their changes instead of the simple structures of global climate models. To some extent, there are consistent ocean circulation changes derived from the three pairs corresponding to the global climate model in so much as the temperature increases not only in winter but summer at both the surface and bottom and that temperature and salinity changes are prominent near the Chinese coast and in the Changjiang bank. However, the simulated circulations are different among each other depending on the prescribed atmospheric conditions not only under present climate but also with regard to future climate conditions. There is not a coincident tendency in ocean circulation changes between present and future simulations derived from the three pairs. This suggests that more simulations with different pairs are needed.

Validation of Ocean General Circulation Model (FMS-MOM4) in Relation with Climatological and Argo Data

  • Chang, You-Soon;Cho, Chang-Woo;Youn, Yong-Hoon;Seo, Jang-Won
    • Journal of the Korean earth science society
    • /
    • v.28 no.5
    • /
    • pp.545-555
    • /
    • 2007
  • Ocean general circulation model developed by GFDL on the basis of MOM4 of FMS are examined and evaluated in order to elucidate the global ocean status. The model employs a tripolar grid system to resolve the Arctic Ocean without polar filtering. The meridional resolution gradually increases from $1/3^{\circ}$ at the equator to $1^{\circ}$ at $30^{\circ}N(S)$. Other horizontal grids have the constant $1^{\circ}$ and vertical grids with 50 levels. The ocean is also coupled to the GFDL sea ice model. It considers tidal effects along with fresh water and chlorophyll concentration. This model is integrated for a 100 year duration with 96 cpu forced by German OMIP and CORE dataset. Levitus, WOA01 climatology, serial CTD observations, WOCE and Argo data are all used for model validation. General features of the world ocean circulation are well simulated except for the western boundary and coastal region where strong advection or fresh water flux are dominant. However, we can find that information concerning chlorophyll and sea ice, newly applied to MOM4 as surface boundary condition, can be used to reduce a model bias near the equatorial and North Pacific ocean.

Pedagogical Mathematica Platform Visualizing the Coriolis Effects in 3-Cell Atmospheric Circulation Model

  • Kim, Bogyeong;Yun, Hee-Joong
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.91-99
    • /
    • 2014
  • The atmospheric flow in the 3-Cell model of global atmosphere circulation is described by the Lagrange's equation of the non-inertial frame where pressure force, frictional force and fictitious force are mixed in complex form. The Coriolis force is an important factor which requires calculation of fictitious force effects on atmospheric flow viewed from the rotating Earth. We make new Mathematica platform to solve Lagrange's equation by numerical analysis in order to analyze dynamics of atmospheric general circulation in the non-inertial frame. It can simulate atmospheric circulation process anywhere on the earth. It is expected that this pedagogical platform can be utilized to help students studying the atmospheric flow understand the mechanisms of atmospheric global circulation.

Changes in the Low Latitude Atmospheric Circulation at the End of the 21st Century Simulated by CMIP5 Models under Global Warming (CMIP5 모델에서 모의되는 지구온난화에 따른 21세기 말 저위도 대기 순환의 변화)

  • Jung, Yoo-Rim;Choi, Da-Hee;Baek, Hee-Jeong;Cho, Chunho
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.377-387
    • /
    • 2013
  • Projections of changes in the low latitude atmospheric circulation under global warming are investigated using the results of the CMIP5 ensemble mean. For this purpose, 30-yr periods for the present day (1971~2000) and the end of the $21^{st}$ century (2071~2100) according to the RCP emission scenarios are compared. The wintertime subtropical jet is projected to strengthen on the upper side of the jet due to increase in meridional temperature gradient induced by warming in the tropical upper-troposphere and cooling in the stratosphere except for the RCP2.6. It is also found that a strengthening of the upper side of the wintertime subtropical jet in the RCP2.6 due to tropical upper-tropospheric warmings. Model-based projection shows a weakening of the mean intensity of the Hadley cell, an upward shift of cell, and poleward shift of the Hadley circulation for the winter cell in both hemispheres. A weakening of the Walker circulation, which is one of the most robust atmospheric responses to global warming, is also projected. These results are consistent with findings in the previous studies based on CMIP3 data sets. A weakening of the Walker circulation is accompanied with decrease (increase) in precipitation over the Indo-Pacific warm pool region (the equatorial central and east Pacific). In addition, model simulation shows a decrease in precipitation over subtropical regions where the descending branch of the winter Hadley cell in both hemispheres is strengthened.

Long-term Variations of Troposphere-Stratosphere Mean Meridional Circulation (대류권-성층권 평균자오면순환의 장기변동)

  • Seol, Dong-Il
    • Journal of the Korean earth science society
    • /
    • v.22 no.5
    • /
    • pp.415-422
    • /
    • 2001
  • Studies of atmospheric general circulation in the troposphere and stratosphere are very important to understand the influence of human activities on the global climate and its change. Recently, the existence of an annual cycle in the circulation has been reported by a number of studies. In this study, the residual mean meridional circulation is calculated by the TEM momentum and continuity equations for the period from December 1985 to November 1995 (10 years), and the long-term variations of the circulation and mass fluxes across the 100hPa surface are examined. The multiple regression statistical model is used to obtain quantitatively the long-term variations. This study is focused especially on mean meridional circulation in the troposphere and stratosphere associated with ENSO (El Ni${\tilde{n}}$o-Southern Oscillation) which is known as a cause of the unusual weather, global climate, and its change. The results show that the global scale troposphere-stratosphere mean meridional circulation is intensified during El Ni${\tilde{n}}$o event and QBO (quasi-biennal oscillation) easterly phase and weakened during La Ni${\tilde{n}}$o event and QBO westerly phase. The signal of Mount Pinatubo volcanic eruption in June 1991 is obtained. Due to the volcanic eruption the global scale troposphere-stratosphere mean meridional circulation is abruptly intensified.

  • PDF

On the Change of Flood and Drought Occurrence Frequency due to Global Warming : 1. Change of Daily Rainfall Depth Distribution due to Different Monthly/Yearly Rainfall Depth (지구온난화에 따른 홍수 및 가뭄 발생빈도의 변화와 관련하여 : 1. 연/월강수량의 변화에 따른 일강수량 분포의 변화분석)

  • Yun, Yong-Nam;Yu, Cheon-Sang;Lee, Jae-Su;An, Jae-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.617-625
    • /
    • 1999
  • Global warming has begun since the industrial revolution and it is getting worse recently. Even though the increase of greenhouse gases such as $CO_2$ is thought to be the main cause for global warming, its impact on global climate has not been revealed clearly in rather quantitative manners. However, researches using General Circulation Models(GCMs) has shown the accumulation of greenhouse gases increases the global mean temperature, which in turn impacts on the global water circulation pattern. This changes in global water circulation pattern result in abnormal and more frequent meteorological events such as severe floods and droughts, generally more severe than the normal ones, which are now common around the world and is referred as a indirect proof of global warming. Korean peninsula also cannot be an exception and have had several extremes recently. The main objective of this research is to analyze the impact of global warming on the change of flood and drought frequency. Based on the assumption that now is a point in a continuously changing climate due to global warming, we analyzed the observed daily rainfall data to find out how the increase of annual rainfall amount affects the distribution of daily rainfall. Obviously, the more the annual rainfall depth, the more frequency of much daily rainfall, and vice versa. However, the analysis of the 17 points data of Keum river basin in Korea shows that especially the number of days of under 10mm or over 50mm daily rainfall depth is highly correlated with the amount of annual rainfall depth, not the number of dry days with their correlation coefficients quite high around 0.8 to 0.9.

  • PDF

Changes in the Tsushima Warm Current and the Impact under a Global Warming Scenario in Coupled Climate Models (기후모델에 나타난 미래기후에서 쓰시마난류의 변화와 그 영향)

  • Choi, A-Ra;Park, Young-Gyu;Choi, Hui Jin
    • Ocean and Polar Research
    • /
    • v.35 no.2
    • /
    • pp.127-134
    • /
    • 2013
  • In this study we investigated changes in the Tsushima Warm Current (TWC) under the global warming scenario RCP 4.5 by analysing the results from the World Climate Research Program's (WCRP) Coupled Model Intercomparison Project Phase 5 (CMIP5). Among the four models that had been employed to analyse the Tsushima Warm Current during the 20th Century, in the CSIRO-Mk3.6.0 and HadGEM2-CC models the transports of the Tsushima Warm Current were 2.8 Sv and 2.1 Sv, respectively, and comparable to observed transport, which is between 2.4 and 2.77 Sv. In the other two models the transports were much greater or smaller than the observed estimates. Using the two models that properly reproduced the transport of the Tsushima Warm Current we investigated the response of the current under the global warming scenario. In both models the volume transports and the temperature were greater in the future climate scenario. Warm advection into the East Sea was intensified to raise the temperature and consequently the heat loss to the air.