• 제목/요약/키워드: global best solution

검색결과 77건 처리시간 0.021초

Function space formulation of the 3-noded distorted Timoshenko metric beam element

  • Manju, S.;Mukherjee, Somenath
    • Structural Engineering and Mechanics
    • /
    • 제69권6호
    • /
    • pp.615-626
    • /
    • 2019
  • The 3-noded metric Timoshenko beam element with an offset of the internal node from the element centre is used here to demonstrate the best-fit paradigm using function space formulation under locking and mesh distortion. The best-fit paradigm follows from the projection theorem describing finite element analysis which shows that the stresses computed by the displacement finite element procedure are the best approximation of the true stresses at an element level as well as global level. In this paper, closed form best-fit solutions are arrived for the 3-noded Timoshenko beam element through function space formulation by combining field consistency requirements and distortion effects for the element modelled in metric Cartesian coordinates. It is demonstrated through projection theorems how lock-free best-fit solutions are arrived even under mesh distortion by using a consistent definition for the shear strain field. It is shown how the field consistency enforced finite element solution differ from the best-fit solution by an extraneous response resulting from an additional spurious force vector. However, it can be observed that when the extraneous forces vanish fortuitously, the field consistent solution coincides with the best-fit strain solution.

HS 성능 향상을 위한 HS-PSO 하이브리드 최적화 알고리즘 (HS-PSO Hybrid Optimization Algorithm for HS Performance Improvement)

  • 이태봉
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권4호
    • /
    • pp.203-209
    • /
    • 2023
  • Harmony search(HS)는 새로운 하모니를 구성할 때 HM을 참조하는 경우 개별 하모니의 평가를 이용하지 않지만 PSO(particle swarm optimization)는 개별 입자의 평가와 모집단의 평가를 이용하여 해를 찾아간다. 그러나 본 연구에서는 HS와 PSO의 유사점을 찾아 PSO의 입자 개선 과정을 HS에 적용하여 알고리즘의 성능을 향상시키고자 하였다. PSO 알고리즘을 적용하기 위해서는 개별 입자의 local best와 떼(swam)의 global best가 필요하다. 본 연구에서는 HS가 harmony memory(HM)에서 가장 나쁜 하모니을 개선하는 과정을 PSO와 매우 유사한 과정으로 보았다. 이에 따라 HM의 가장 나쁜 하모니를 입자의 PSO의 local best로, 가장 좋은 하모니는 PSO의 global best 최고로 간주하였다. 이와 같이 PSO의 입자 개선과정을 HS 하모니 개선과정에 도입하여 HS의 성능을 향상시킬 수 있었다. 본 연구의 결과는 다양한 함수에 대한 최적화 예시를 통해 비교 확인하였다. 그 결과 정확성과 일관성에 있어 기존 HS보다 제안한 HS-PSO가 매우 우수함을 알 수 있었다.

A new swarm intelligent optimization algorithm: Pigeon Colony Algorithm (PCA)

  • Yi, Ting-Hua;Wen, Kai-Fang;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • 제18권3호
    • /
    • pp.425-448
    • /
    • 2016
  • In this paper, a new Pigeon Colony Algorithm (PCA) based on the features of a pigeon colony flying is proposed for solving global numerical optimization problems. The algorithm mainly consists of the take-off process, flying process and homing process, in which the take-off process is employed to homogenize the initial values and look for the direction of the optimal solution; the flying process is designed to search for the local and global optimum and improve the global worst solution; and the homing process aims to avoid having the algorithm fall into a local optimum. The impact of parameters on the PCA solution quality is investigated in detail. There are low-dimensional functions, high-dimensional functions and systems of nonlinear equations that are used to test the global optimization ability of the PCA. Finally, comparative experiments between the PCA, standard genetic algorithm and particle swarm optimization were performed. The results showed that PCA has the best global convergence, smallest cycle indexes, and strongest stability when solving high-dimensional, multi-peak and complicated problems.

인공벌 군집 알고리즘을 기반으로 한 복합탐색법 (A Hybrid Search Method Based on the Artificial Bee Colony Algorithm)

  • 이수항;김일현;김용호;한석영
    • 한국생산제조학회지
    • /
    • 제23권3호
    • /
    • pp.213-217
    • /
    • 2014
  • A hybrid search method based on the artificial bee colony algorithm (ABCA) with harmony search (HS) is suggested for finding a global solution in the field of optimization. Three cases of the suggested algorithm were examined for improving the accuracy and convergence rate. The results showed that the case in which the harmony search was implemented with the onlooker phase in ABCA was the best among the three cases. Although the total computation time of the best case is a little bit longer than the original ABCA under the prescribed conditions, the global solution improved and the convergence rate was slightly faster than those of the ABCA. It is concluded that the suggested algorithm improves the accuracy and convergence rate, and it is expected that it can effectively be applied to optimization problems with many design variables and local solutions.

Hyper Parameter Tuning Method based on Sampling for Optimal LSTM Model

  • Kim, Hyemee;Jeong, Ryeji;Bae, Hyerim
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권1호
    • /
    • pp.137-143
    • /
    • 2019
  • As the performance of computers increases, the use of deep learning, which has faced technical limitations in the past, is becoming more diverse. In many fields, deep learning has contributed to the creation of added value and used on the bases of more data as the application become more divers. The process for obtaining a better performance model will require a longer time than before, and therefore it will be necessary to find an optimal model that shows the best performance more quickly. In the artificial neural network modeling a tuning process that changes various elements of the neural network model is used to improve the model performance. Except Gride Search and Manual Search, which are widely used as tuning methods, most methodologies have been developed focusing on heuristic algorithms. The heuristic algorithm can get the results in a short time, but the results are likely to be the local optimal solution. Obtaining a global optimal solution eliminates the possibility of a local optimal solution. Although the Brute Force Method is commonly used to find the global optimal solution, it is not applicable because of an infinite number of hyper parameter combinations. In this paper, we use a statistical technique to reduce the number of possible cases, so that we can find the global optimal solution.

A Study on the Global Competitiveness and Way of Coexistence of Korean ICT Industries

  • Chang, Young-Hyun
    • International journal of advanced smart convergence
    • /
    • 제4권2호
    • /
    • pp.124-130
    • /
    • 2015
  • Infinite competition on ICT industries is starting again. The basis of competence over global dominance will be human resource, a global ecosystem for products and national agenda for science and technology, etc.. This paper presents the six solution for the Global Competitiveness and Coexistence of Korean ICT Industries. Korea should nurture the brand of "World Best Korean ICT Forever" to secure technical competency of ICT related fields in global market. All ICT technologies should be aligned to global standard and market demand from beginning and the ecosystem around product needs to be established. System framework for utilizing the resource of core SW experts must be established. Through global partnership with China as manufacturing base for Korea-developed products, technical competency can be maintained including product planning. Security measure for technical assets is mandatory. Finally, core technology that will drive the future of ICT industries in Korea should be regarded as core subjects.

전역경로계획을 위한 단경로 스트링에서 당기기와 밀어내기 SOFM을 이용한 방법의 비교 (The Comparison of Pulled- and Pushed-SOFM in Single String for Global Path Planning)

  • 차영엽;김곤우
    • 제어로봇시스템학회논문지
    • /
    • 제15권4호
    • /
    • pp.451-455
    • /
    • 2009
  • This paper provides a comparison of global path planning method in single string by using pulled and pushed SOFM (Self-Organizing Feature Map) which is a method among a number of neural network. The self-organizing feature map uses a randomized small valued initial-weight-vectors, selects the neuron whose weight vector best matches input as the winning neuron, and trains the weight vectors such that neurons within the activity bubble are move toward the input vector. On the other hand, the modified SOFM method in this research uses a predetermined initial weight vectors of the one dimensional string, gives the systematic input vector whose position best matches obstacles, and trains the weight vectors such that neurons within the activity bubble are move toward or reverse the input vector, by rising a pulled- or a pushed-SOFM. According to simulation results one can conclude that the modified neural networks in single string are useful tool for the global path planning problem of a mobile robot. In comparison of the number of iteration for converging to the solution the pushed-SOFM is more useful than the pulled-SOFM in global path planning for mobile robot.

Parameter estimation of four-parameter viscoelastic Burger model by inverse analysis: case studies of four oil-refineries

  • Dey, Arindam;Basudhar, Prabir Kr.
    • Interaction and multiscale mechanics
    • /
    • 제5권3호
    • /
    • pp.211-228
    • /
    • 2012
  • This paper reports the development of a generalized inverse analysis formulation for the parameter estimation of four-parameter Burger model. The analysis is carried out by formulating the problem as a mathematical programming formulation in terms of identification of the design vector, the objective function and the design constraints. Thereafter, the formulated constrained nonlinear multivariable problem is solved with the aid of fmincon: an in-built constrained optimization solver module available in MatLab. In order to gain experience, a synthetic case-study is considered wherein key issues such as the determination and setting up of variable bounds, global optimality of the solution and minimum number of data-points required for prediction of parameters is addressed. The results reveal that the developed technique is quite efficient in predicting the model parameters. The best result is obtained when the design variables are subjected to a lower bound without any upper bound. Global optimality of the solution is achieved using the developed technique. A minimum of 4-5 randomly selected data-points are required to achieve the optimal solution. The above technique has also been adopted for real-time settlement of four oil refineries with encouraging results.

Feasibility study of improved particle swarm optimization in kriging metamodel based structural model updating

  • Qin, Shiqiang;Hu, Jia;Zhou, Yun-Lai;Zhang, Yazhou;Kang, Juntao
    • Structural Engineering and Mechanics
    • /
    • 제70권5호
    • /
    • pp.513-524
    • /
    • 2019
  • This study proposed an improved particle swarm optimization (IPSO) method ensemble with kriging model for model updating. By introducing genetic algorithm (GA) and grouping strategy together with elite selection into standard particle optimization (PSO), the IPSO is obtained. Kriging metamodel serves for predicting the structural responses to avoid complex computation via finite element model. The combination of IPSO and kriging model shall provide more accurate searching results and obtain global optimal solution for model updating compared with the PSO, Simulate Annealing PSO (SimuAPSO), BreedPSO and PSOGA. A plane truss structure and ASCE Benchmark frame structure are adopted to verify the proposed approach. The results indicated that the hybrid of kriging model and IPSO could serve for model updating effectively and efficiently. The updating results further illustrated that IPSO can provide superior convergent solutions compared with PSO, SimuAPSO, BreedPSO and PSOGA.

MIN-based 다중 처리 시스템을 위한 효율적인 병렬 Branch-and-Bound 알고리즘 설계 및 성능 분석 (Design and Performance Analysis of a Parallel Optimal Branch-and-Bound Algorithm for MIN-based Multiprocessors)

  • 양명국
    • 전기전자학회논문지
    • /
    • 제1권1호
    • /
    • pp.31-46
    • /
    • 1997
  • 본 논문에서는 다층 연결 구조(Multistage Interconnection Network, MIN)를 기반으로 하는 병렬 컴퓨터 환경에서 효과적으로 운용할 수 있는 병렬 Optimal Best-First search Branch-and-Bound 알고리즘(pobs)을 제안하고, 성능을 분석하였다. 제안된 알고리즘은 먼저 해를 얻고자 하는 문제를 임의의 G개 부 문제로 분할하고 소수 프로세서로 구성된 프로세서 그룹들에 할당하여 각각의 지역 해를 산출하도록 하였다. 따라서 N개의 프로세서를 갖는 시스템은 G개 프로세서 그룹으로 구분되고 각 프로세서 그룹은 P(=N/G)개 프로세서를 보유하게 된다. 각 프로세서 그룹은 할당된 부 문제의 지역 해를 얻는 과정에 병렬 sub-Global Best-First B&B 알고리즘을 수행한다. 프로세서 그룹들이 산출한 지역 해들 가운데 최선의 값을 갖는 지역 해가 문제의 전역 해로 결정되는데, 이를 위하여 각 프로세서 그룹의 대표 프로세서는 할당된 부 문제의 지역 해를 다른 그룹들에게 전파하도록 하였다. 지역 해 전파는 프로세서 그룹들의 지역 해 비교를 통한 전역해 선정 기능과 함께 프로세서 그룹간 작업 불균형 문제를 상당 부분 해소하는 효과를 제공한다. 알고리즘 설계에 이어 성능 평가를 위한 분석 모형을 제시하였다. 제안한 모형은 B&B 알고리즘 수행에 따른 연산 소요시간과 통신 소요시간을 분리하여 처리함으로 병렬 처리 환경에서 보다 실질적인 알고리즘 성능 평가가 가능하게 함과 동시에, 다양한 컴퓨터 연결 구조에서의 알고리즘 성능 예측을 용이하게 하였다. B&B 알고리즘의 확률 특성을 토대로 작성된 성능 분석 연구의 실효성 검토를 위하여 MIN 기반 시스템을 대상으로 병행된 시뮬레이션 결과는 상호 미세한 오차 범위 내에서 일치하는 결과를 보여 제시한 성능 분석 기법의 타당성을 입증하였다. 또한, 본 논문에서 제안한 병렬 알고리즘을 MIN 기반 시스템에 적용하여 기존 알고리즘의 성능과 비교 평가 결과 제안한 pobs가 문제 해결 과정에서 전개되는 부 문제 수를 줄이고 프로세서간의 효율적인 작업 분배 효과를 제공하는 한편 프로세서간의 주된 통신 활동 범위를 국부적으로 제한하여 성능면에서 우수함을 입증하였다.

  • PDF