The 3-noded metric Timoshenko beam element with an offset of the internal node from the element centre is used here to demonstrate the best-fit paradigm using function space formulation under locking and mesh distortion. The best-fit paradigm follows from the projection theorem describing finite element analysis which shows that the stresses computed by the displacement finite element procedure are the best approximation of the true stresses at an element level as well as global level. In this paper, closed form best-fit solutions are arrived for the 3-noded Timoshenko beam element through function space formulation by combining field consistency requirements and distortion effects for the element modelled in metric Cartesian coordinates. It is demonstrated through projection theorems how lock-free best-fit solutions are arrived even under mesh distortion by using a consistent definition for the shear strain field. It is shown how the field consistency enforced finite element solution differ from the best-fit solution by an extraneous response resulting from an additional spurious force vector. However, it can be observed that when the extraneous forces vanish fortuitously, the field consistent solution coincides with the best-fit strain solution.
Harmony search(HS)는 새로운 하모니를 구성할 때 HM을 참조하는 경우 개별 하모니의 평가를 이용하지 않지만 PSO(particle swarm optimization)는 개별 입자의 평가와 모집단의 평가를 이용하여 해를 찾아간다. 그러나 본 연구에서는 HS와 PSO의 유사점을 찾아 PSO의 입자 개선 과정을 HS에 적용하여 알고리즘의 성능을 향상시키고자 하였다. PSO 알고리즘을 적용하기 위해서는 개별 입자의 local best와 떼(swam)의 global best가 필요하다. 본 연구에서는 HS가 harmony memory(HM)에서 가장 나쁜 하모니을 개선하는 과정을 PSO와 매우 유사한 과정으로 보았다. 이에 따라 HM의 가장 나쁜 하모니를 입자의 PSO의 local best로, 가장 좋은 하모니는 PSO의 global best 최고로 간주하였다. 이와 같이 PSO의 입자 개선과정을 HS 하모니 개선과정에 도입하여 HS의 성능을 향상시킬 수 있었다. 본 연구의 결과는 다양한 함수에 대한 최적화 예시를 통해 비교 확인하였다. 그 결과 정확성과 일관성에 있어 기존 HS보다 제안한 HS-PSO가 매우 우수함을 알 수 있었다.
In this paper, a new Pigeon Colony Algorithm (PCA) based on the features of a pigeon colony flying is proposed for solving global numerical optimization problems. The algorithm mainly consists of the take-off process, flying process and homing process, in which the take-off process is employed to homogenize the initial values and look for the direction of the optimal solution; the flying process is designed to search for the local and global optimum and improve the global worst solution; and the homing process aims to avoid having the algorithm fall into a local optimum. The impact of parameters on the PCA solution quality is investigated in detail. There are low-dimensional functions, high-dimensional functions and systems of nonlinear equations that are used to test the global optimization ability of the PCA. Finally, comparative experiments between the PCA, standard genetic algorithm and particle swarm optimization were performed. The results showed that PCA has the best global convergence, smallest cycle indexes, and strongest stability when solving high-dimensional, multi-peak and complicated problems.
A hybrid search method based on the artificial bee colony algorithm (ABCA) with harmony search (HS) is suggested for finding a global solution in the field of optimization. Three cases of the suggested algorithm were examined for improving the accuracy and convergence rate. The results showed that the case in which the harmony search was implemented with the onlooker phase in ABCA was the best among the three cases. Although the total computation time of the best case is a little bit longer than the original ABCA under the prescribed conditions, the global solution improved and the convergence rate was slightly faster than those of the ABCA. It is concluded that the suggested algorithm improves the accuracy and convergence rate, and it is expected that it can effectively be applied to optimization problems with many design variables and local solutions.
As the performance of computers increases, the use of deep learning, which has faced technical limitations in the past, is becoming more diverse. In many fields, deep learning has contributed to the creation of added value and used on the bases of more data as the application become more divers. The process for obtaining a better performance model will require a longer time than before, and therefore it will be necessary to find an optimal model that shows the best performance more quickly. In the artificial neural network modeling a tuning process that changes various elements of the neural network model is used to improve the model performance. Except Gride Search and Manual Search, which are widely used as tuning methods, most methodologies have been developed focusing on heuristic algorithms. The heuristic algorithm can get the results in a short time, but the results are likely to be the local optimal solution. Obtaining a global optimal solution eliminates the possibility of a local optimal solution. Although the Brute Force Method is commonly used to find the global optimal solution, it is not applicable because of an infinite number of hyper parameter combinations. In this paper, we use a statistical technique to reduce the number of possible cases, so that we can find the global optimal solution.
International journal of advanced smart convergence
/
제4권2호
/
pp.124-130
/
2015
Infinite competition on ICT industries is starting again. The basis of competence over global dominance will be human resource, a global ecosystem for products and national agenda for science and technology, etc.. This paper presents the six solution for the Global Competitiveness and Coexistence of Korean ICT Industries. Korea should nurture the brand of "World Best Korean ICT Forever" to secure technical competency of ICT related fields in global market. All ICT technologies should be aligned to global standard and market demand from beginning and the ecosystem around product needs to be established. System framework for utilizing the resource of core SW experts must be established. Through global partnership with China as manufacturing base for Korea-developed products, technical competency can be maintained including product planning. Security measure for technical assets is mandatory. Finally, core technology that will drive the future of ICT industries in Korea should be regarded as core subjects.
This paper provides a comparison of global path planning method in single string by using pulled and pushed SOFM (Self-Organizing Feature Map) which is a method among a number of neural network. The self-organizing feature map uses a randomized small valued initial-weight-vectors, selects the neuron whose weight vector best matches input as the winning neuron, and trains the weight vectors such that neurons within the activity bubble are move toward the input vector. On the other hand, the modified SOFM method in this research uses a predetermined initial weight vectors of the one dimensional string, gives the systematic input vector whose position best matches obstacles, and trains the weight vectors such that neurons within the activity bubble are move toward or reverse the input vector, by rising a pulled- or a pushed-SOFM. According to simulation results one can conclude that the modified neural networks in single string are useful tool for the global path planning problem of a mobile robot. In comparison of the number of iteration for converging to the solution the pushed-SOFM is more useful than the pulled-SOFM in global path planning for mobile robot.
This paper reports the development of a generalized inverse analysis formulation for the parameter estimation of four-parameter Burger model. The analysis is carried out by formulating the problem as a mathematical programming formulation in terms of identification of the design vector, the objective function and the design constraints. Thereafter, the formulated constrained nonlinear multivariable problem is solved with the aid of fmincon: an in-built constrained optimization solver module available in MatLab. In order to gain experience, a synthetic case-study is considered wherein key issues such as the determination and setting up of variable bounds, global optimality of the solution and minimum number of data-points required for prediction of parameters is addressed. The results reveal that the developed technique is quite efficient in predicting the model parameters. The best result is obtained when the design variables are subjected to a lower bound without any upper bound. Global optimality of the solution is achieved using the developed technique. A minimum of 4-5 randomly selected data-points are required to achieve the optimal solution. The above technique has also been adopted for real-time settlement of four oil refineries with encouraging results.
This study proposed an improved particle swarm optimization (IPSO) method ensemble with kriging model for model updating. By introducing genetic algorithm (GA) and grouping strategy together with elite selection into standard particle optimization (PSO), the IPSO is obtained. Kriging metamodel serves for predicting the structural responses to avoid complex computation via finite element model. The combination of IPSO and kriging model shall provide more accurate searching results and obtain global optimal solution for model updating compared with the PSO, Simulate Annealing PSO (SimuAPSO), BreedPSO and PSOGA. A plane truss structure and ASCE Benchmark frame structure are adopted to verify the proposed approach. The results indicated that the hybrid of kriging model and IPSO could serve for model updating effectively and efficiently. The updating results further illustrated that IPSO can provide superior convergent solutions compared with PSO, SimuAPSO, BreedPSO and PSOGA.
본 논문에서는 다층 연결 구조(Multistage Interconnection Network, MIN)를 기반으로 하는 병렬 컴퓨터 환경에서 효과적으로 운용할 수 있는 병렬 Optimal Best-First search Branch-and-Bound 알고리즘(pobs)을 제안하고, 성능을 분석하였다. 제안된 알고리즘은 먼저 해를 얻고자 하는 문제를 임의의 G개 부 문제로 분할하고 소수 프로세서로 구성된 프로세서 그룹들에 할당하여 각각의 지역 해를 산출하도록 하였다. 따라서 N개의 프로세서를 갖는 시스템은 G개 프로세서 그룹으로 구분되고 각 프로세서 그룹은 P(=N/G)개 프로세서를 보유하게 된다. 각 프로세서 그룹은 할당된 부 문제의 지역 해를 얻는 과정에 병렬 sub-Global Best-First B&B 알고리즘을 수행한다. 프로세서 그룹들이 산출한 지역 해들 가운데 최선의 값을 갖는 지역 해가 문제의 전역 해로 결정되는데, 이를 위하여 각 프로세서 그룹의 대표 프로세서는 할당된 부 문제의 지역 해를 다른 그룹들에게 전파하도록 하였다. 지역 해 전파는 프로세서 그룹들의 지역 해 비교를 통한 전역해 선정 기능과 함께 프로세서 그룹간 작업 불균형 문제를 상당 부분 해소하는 효과를 제공한다. 알고리즘 설계에 이어 성능 평가를 위한 분석 모형을 제시하였다. 제안한 모형은 B&B 알고리즘 수행에 따른 연산 소요시간과 통신 소요시간을 분리하여 처리함으로 병렬 처리 환경에서 보다 실질적인 알고리즘 성능 평가가 가능하게 함과 동시에, 다양한 컴퓨터 연결 구조에서의 알고리즘 성능 예측을 용이하게 하였다. B&B 알고리즘의 확률 특성을 토대로 작성된 성능 분석 연구의 실효성 검토를 위하여 MIN 기반 시스템을 대상으로 병행된 시뮬레이션 결과는 상호 미세한 오차 범위 내에서 일치하는 결과를 보여 제시한 성능 분석 기법의 타당성을 입증하였다. 또한, 본 논문에서 제안한 병렬 알고리즘을 MIN 기반 시스템에 적용하여 기존 알고리즘의 성능과 비교 평가 결과 제안한 pobs가 문제 해결 과정에서 전개되는 부 문제 수를 줄이고 프로세서간의 효율적인 작업 분배 효과를 제공하는 한편 프로세서간의 주된 통신 활동 범위를 국부적으로 제한하여 성능면에서 우수함을 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.