• 제목/요약/키워드: glial fibrillary acidic protein (GFAP)

검색결과 78건 처리시간 0.024초

전뇌 허혈성 흰쥐 모델에서 mBHT의 신경보호효과 연구 (Neuroprotective effect of modify Bo-Yang-Hwan-O-Tang on global ischemia in rat)

  • 오태우;박용기
    • 대한본초학회지
    • /
    • 제27권6호
    • /
    • pp.83-90
    • /
    • 2012
  • Objectives : Modified Bo-Yang-Hwan-O-Tang (mBHT) is a polyherbal medicine of twelve herbs traditionally used in the treatment of cerebral and cardiac stroke and vascular dementia. The purpose of this study was to evaluate the neuroprotective effect, pyramidal neuronal cell, inflammation and apoptosis of mBHT against global ischemia in rats. Methods : Global ischemia was produced by two-vessel occlusion(2-VO) in SD male rats. mBHT at dose of 500 mg/kg was orally administrated for 2 weeks or 6 weeks after global ischemia. The histopathological changes of ischemic brain were observed by staining of hematoxylin and eosin (H&E) and Nissl and immunohistochemisty with anti-GFAP (glial fibrillary acidic protein) antibody as a astrocyte marker. The expression of inducible nitric oxide synthase (iNOS) and apoptotic proteins such as Bax, Bcl-2 and caspase-3 was determined by western blot. Results : mBHT treatment significantly inhibited the pyramidal neuronal loss in CA1 of hippocampus of global ischemic rats by 2-VO. mBHT also suppressed the activation of astrocytes in the CA1 at 6 weeks after ischemia. In addition, mBHT significantly increased the expression of anti-apoptotic protein, Bcl-2 on iscemic brain, and significantly attenuated the expression of apoptotic proteins, Bax and caspase-3. Conclusions : These results indicate that mBHT inhibits neuronal cell damage induced in global ischemia by 2-VO, suggesting that mBHT may be a potential candidate for the treatment of vascular dementia.

과산화수소 자극으로 활성화된 C6 성상교세포에 대한 맥문동추출물의 조절 효능 연구 (A Study on the Effect of Liriopis tuber water extract on Hydrogen Peroxide-stimulated C6 Astrocyte Cells)

  • 박기호;강석용;정효원;박용기
    • 대한본초학회지
    • /
    • 제35권4호
    • /
    • pp.9-16
    • /
    • 2020
  • Objective : To identify the effects of the water extract of Liriope platyphylla tuber (Liriopis tuber, LT) on the activation of astocytes, we investigated the regulatory effects of LT extract on H2O2-induced oxidative damage in C6 rat astrocytes. Methods : LT extract was extracted with boiling water. C6 cell line were treated with LT extract at 1, 2, and 3 mg/㎖ or without for 30 min and then stimulated with H2O2 at 5 ㎛ for 24 hr. The cell viability was measured by MTT assay. The expression of glial fibrillary acidic protein (GFAP), signal transducer and activator of transcription 3 (STAT3), phospho-STAT3 (pSTAT3), cyclooxygenase (COX-2), Nuclear factor-κB (NF-κB), superoxide dismutase 2 (SOD2), heme oxygenase-1 (HO-1), catalase, Akt, phospho-Akt (p-Akt) phosphoinositide 3-kinases (PI3K), and protein kinase C alpha (PKCα) proteins were determined by Western blot, respectively. GFAP expression was also observed with immunocytochemistry under a fluorescence microscope. Results : LT extract induced cell proliferation in H2O2-stimulated C6 cells. LT extract significantly inhibited the expression of GFAP, NF-κB and COX-2 and increased the expression of HO-1 and the phosphorylation of STAT3 in H2O2-stimulated C6 cells. LT extract also significantly increased the phosphorylation of Akt and decreased the expression of PKCα in a dose-dependent manner in H2O2-stimulated C6 cells. Conclusions : LT extract can regulate H2O2-induced activation of astrocytes through inhibiting the expression of NF-κB, COX-2 and regulating Akt / HO-1, STAT3 or PKCα signaling pathway.

Synthetic Prion Peptide 106-126 Resulted in an Increase Matrix Metalloproteinases and Inflammatory Cytokines from Rat Astrocytes and Microglial Cells

  • Song, Kib-Beum;Na, Ji-Young;Oh, Myung-Hoon;Kim, Sok-Ho;Kim, Young-Ha;Park, Byung-Yong;Shin, Gi-Wook;Kim, Bum-Seok;You, Myung-Jo;Kwon, Jung-Kee
    • Toxicological Research
    • /
    • 제28권1호
    • /
    • pp.5-9
    • /
    • 2012
  • It has been shown that the accumulation of prion in the cytoplasm can result in neurodegenerative disorders. Synthetic prion peptide 106-126 (PrP) is a glycoprotein that is expressed predominantly by neurons and other cells, including glial cells. Prion-induced chronic neurodegeneration has a substantial inflammatory component, and an increase in the levels of matrix metalloproteinases (MMPs) may play an important role in neurodegenerative development and progression. However, the expression of MMPs in PrP induced rat astrocytes and microglia has not yet been compared. Thus, in this study, we examined the fluorescence intensity of CD11b positive microglia and Glial Fibrillary Acidic Protein (GFAP) positive astrocytes and found that the fluorescent intensity was increased following incubation with PrP at 24 hours in a dose-dependent manner. We also observed an increase in interleukin-1 beta (IL-$1{\beta}$) and tumor necrosis factor alpha (TNF-${\alpha}$) protein expression, which are initial inflammatory cytokines, in both PrP induced astrocytes and microglia. Furthermore, an increase MMP-1, 3 and 11 expressions in PrP induced astrocytes and microglia was observed by real time PCR. Our results demonstrated PrP induced activation of astrocytes and microglia respectively, which resulted in an increase in inflammatory cytokines and MMPs expression. These results provide the insight into the different sensitivities of glial cells to PrP.

Neuroprotective effect of caffeic acid phenethyl ester in 3-nitropropionic acid-induced striatal neurotoxicity

  • Bak, Jia;Kim, Hee Jung;Kim, Seong Yun;Choi, Yun-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권3호
    • /
    • pp.279-286
    • /
    • 2016
  • Caffeic acid phenethyl ester (CAPE), derived from honeybee hives, is a bioactive compound with strong antioxidant activity. This study was designed to test the neuroprotective effect of CAPE in 3-nitropropionic acid (3NP)-induced striatal neurotoxicity, a chemical model of Huntington's disease (HD). Initially, to test CAPE's antioxidant activity, a 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) antioxidant assay was employed, and CAPE showed a strong direct radical-scavenging effect. In addition, CAPE provided protection from 3NP-induced neuronal cell death in cultured striatal neurons. Based on these observations, the in vivo therapeutic potential of CAPE in 3NP-induced HD was tested. For this purpose, male C57BL/6 mice were repeatedly given 3NP to induce HD-like pathogenesis, and 30 mg/kg of CAPE or vehicle (5% dimethyl sulfoxide and 95% peanut oil) was administered daily. CAPE did not cause changes in body weight, but it reduced mortality by 29%. In addition, compared to the vehicle-treated group, robustly reduced striatal damage was observed in the CAPE-treated animals, and the 3NP-induced behavioral deficits on the rotarod test were significantly rescued after the CAPE treatment. Furthermore, immunohistochemical data showed that immunoreactivity to glial fibrillary acidic protein (GFAP) and CD45, markers for astrocyte and microglia activation, respectively, were strikingly reduced. Combined, these data unequivocally indicate that CAPE has a strong antioxidant effect and can be used as a potential therapeutic agent against HD.

Epigallocatechin-3-Gallate (EGCG) Attenuates Traumatic Brain Injury by Inhibition of Edema Formation and Oxidative Stress

  • Zhang, Bo;Wang, Bing;Cao, Shuhua;Wang, Yongqiang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권6호
    • /
    • pp.491-497
    • /
    • 2015
  • Traumatic brain injury (TBI) is a major cause of mortality and long-term disability, which can decrease quality of life. In spite of numerous studies suggesting that Epigallocatechin-3- gallate (EGCG) has been used as a therapeutic agent for a broad range of disorders, the effect of EGCG on TBI remains unknown. In this study, a weight drop model was established to evaluate the therapeutic potential of EGCG on TBI. Rats were administered with 100 mg/kg EGCG or PBS intraperitoneally. At different times following trauma, rats were sacrificed for analysis. It was found that EGCG (100 mg/kg, i.p.) treatment significantly reduced brain water content and vascular permeability at 12, 24, 48, 72 hour after TBI. Real-time PCR results revealed that EGCG inhibited TBI-induced IL-$1{\beta}$ and TNF-${\alpha}$ mRNA expression. Importantly, CD68 mRNA expression decreasing in the brain suggested that EGCG inhibited microglia activation. Western blotting and immunohistochemistry results showed that administering of EGCG significantly inhibited the levels of aquaporin-4 (AQP4) and glial fibrillary acidic protein (GFAP) expression. TBI-induced oxidative stress was remarkably impaired by EGCG treatment, which elevated the activities of SOD and GSH-PX. Conversely, EGCG significantly reduced the contents of MDA after TBI. In addition, EGCG decreased TBI-induced NADPH oxidase activation through inhibition of $p47^{phox}$ translocation from cytoplasm to plasma membrane. These data demonstrate that EGCG treatment may be an effective therapeutic strategy for TBI and the underlying mechanism involves inhibition of oxidative stress.

Immunopathological Changes in the Brain of Immunosuppressed Mice Experimentally Infected with Toxocara canis

  • Eid, Mohamed M.;El-Kowrany, Samy I.;Othman, Ahmad A.;El Gendy, Dina I.;Saied, Eman M.
    • Parasites, Hosts and Diseases
    • /
    • 제53권1호
    • /
    • pp.51-58
    • /
    • 2015
  • Toxocariasis is a soil-transmitted helminthozoonosis due to infection of humans by larvae of Toxocara canis. The disease could produce cognitive and behavioral disturbances especially in children. Meanwhile, in our modern era, the incidence of immunosuppression has been progressively increasing due to increased incidence of malignancy as well as increased use of immunosuppressive agents. The present study aimed at comparing some of the pathological and immunological alterations in the brain of normal and immunosuppressed mice experimentally infected with T. canis. Therefore, 180 Swiss albino mice were divided into 4 groups including normal (control) group, immunocompetent T. canis-infected group, immunosuppressed group (control), and immunosuppressed infected group. Infected mice were subjected to larval counts in the brain, and the brains from all mice were assessed for histopathological changes, astrogliosis, and IL-5 mRNA expression levels in brain tissues. The results showed that under immunosuppression, there were significant increase in brain larval counts, significant enhancement of reactive gliosis, and significant reduction in IL-5 mRNA expression. All these changes were maximal in the chronic stage of infection. In conclusion, the immunopathological alterations in the brains of infected animals were progressive over time, and were exaggerated under the effect of immunosuppression as did the intensity of cerebral infection.

척수압박손상 흰쥐의 척수조직 염증반응에 황금(黃芩)이 미치는 영향 (Effects of Root of Scutellariae Radix against Inflammatory Response in the Spinal Cord Contusion Injury in Rats)

  • 양기영;최원익;신정원;박성하;김성준;이종수;손낙원
    • 한방재활의학과학회지
    • /
    • 제21권3호
    • /
    • pp.1-11
    • /
    • 2011
  • Objectives : This study was performed to evaluate the effects of root of Scutellariae Radix(SR) water extract against inflammatory response in the spinal cord injury(SCI). Methods : SCI was induced by mechanical contusion following laminectomy of 10th thoracic vertebra in Sprague-Dawley rat. SR was orally given once a day for 7days after SCI. Myeloperoxidase(MPO) positive neutrophils infiltration was examined. Inducible nitric oxide synthase(iNOS) and tumor necrosis factor-${\alpha}$(TNF-${\alpha}$) expressions were observed with immunohistochemistry. Glial fibrillary acidic protein(GFAP) positive astrocytes were examined using immuno-fluorescence. Results : 1. SR reduced MPO-positive neutrophils infiltration in peri-damage regions of the contusive SCI-induced rats. 2. SR reduced iNOS positive cells in the white matter of the contusive SCI-induced rats. 3. SR reduced TNF-${\alpha}$ positive cells in the gray and white matter of the contusive SCI-induced rats. 4. SR reduced cell number and size of astrocytes in peri-damage regions of the contusive SCI-induced rats. Conclusions : These results suggest that SR plays an inhibitory role against inflammatory response in the SCI.

신경세포 배양법을 이용한 methamphetamine과 cadmium의 신경독성 평가 (Neurotoxicity Assessment of Methamphetamine and Cadmium Using Cultured Neuronal Cells of Long-Evans Rats)

  • 조대현;김준규;정용;이봉훈;김은엽;김정구;조태순;김진석;문화회
    • Toxicological Research
    • /
    • 제12권1호
    • /
    • pp.69-79
    • /
    • 1996
  • Primary culture of cerebellar neuronal cells derived from 8-day old Long-Evans rats was used. Pure granule cells, astrocytes or mixed cells culture systems were prepared. These cells were differentiated and developed synaptic connections. And the astrocytes were identified by immunostaining with glial fibrillary acidic protein (GFAP). Methamphetamine (MAP), which acts on dopaminergic system and cadmium (Cd), a toxic heavy metal, were applied and biochemical assays and electrophysiological studies were performed. $LC_50$ values estimated by MTT assay of MAP and Cd were 3 mM and 2$\mu M$ respectively. Cells were treated with 1 mM or 2 mM MAP and 1$\mu M$ $CdCl_2$ for 48 hour, and the incubation media were analyzed for the content of released LDH. MAP (2 mM) and Cd significantly increased the LDH release. Cell viability was decreased in both groups and some cytopathological changes like cell swelling or vacuolization were seen. The cerebellar granule cells were used for measuring membrane currents using whole-cell clamp technique. Sodium and potassium currents were not affected by MAP neither Cd, but calcium current was significantly reduced by Cd but not affected by MAP. Therefore, in vitro neurotoxicity test system using neuronaI cells and astrocytes cultures were established and can be used in screening of potential neurotoxic chemicals.

  • PDF

목근피(木槿皮)가 CT105와 ${\beta}A$로 유도된 Alzheimer's Disease 병태(病態) 모델에 미치는 영향 (The Effects of Hibiscus syriacus(HSS) Extract on the Alzheimer's Disease Model Induced by CT-105 and ${\beta}A$)

  • 최병만;정인철;이상룡
    • 동의신경정신과학회지
    • /
    • 제15권2호
    • /
    • pp.119-139
    • /
    • 2004
  • This research investigates the effect of the Hibiscus syriacus(HSS) on Alzheimer's disease. Specifically, the effects of the HSS extract on (1) $IL-1{\beta}$, IL-6, and $TNF-{\alpha}$ mRNA of PC-12 cells treated with LPS; (2) amyloid precursor proteins(APP), acetylcholinesterase(AChE), and glial fibrillary acidic protein(GFAP) mRNA of PC-12 cells treated with CT-105; (3) the AChE activity and the APP production of PC-12 cell treated with CT-105; (4) the behavior; (4) expression of $IL-1{\beta}$, $TNF-{\alpha}$, $IL-1{\beta}$ mRNA, $TNF-{\alpha}$ mRNA, and reactive oxygen species(ROS); (5) the infarction area of the hippocampus, and brain tissue injury in Alzheimer's diseased mice induced with ${\beta}A$ were investigated. The results were summarized below ; 1. The HSS extract suppressed the expression of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ mRNA in THP-l cells treated with LPS. 2. The HSS extract suppressed the expression of APP, AChE, and GFAP mRNA in PC-12 cells treated with CT-105. 3. The HSS extract suppressed the AChE activity, and the production of APP significantly in PC-12 cells treated with CT-105. 4. For the HSS extract group a significant inhibitory effect on the memory deficit was shown for the mice with Alzheimer's disease induced by ${\beta}A$ in the Morris water maze experiment, which measured stop-through latency, and distance movement-through latency. 5. The HSS extract suppressed the over-expression of $IL-1{\beta}$, $TNF-{\alpha}$, $IL-1{\beta}$ and $TNF-{\alpha}$ mRNA, CD68/GFAP, ROS in the mice with Alzheimer's disease induced by ${\beta}A$. 6. The HSS extract reduced the infarction area of hippocampus, and controlled the injury of brain tissue in the mice with Alzheimer's disease induced by ${\beta}A$. These results suggest that the HSS extract may be effective for the prevention and treatment of Alzheimer's disease. Investigation into the clinical use of the HSS extract for Alzheimer's disease is suggested for future research.

  • PDF

허혈성 뇌졸중에서 심혈관 질환과 심방세동을 위한 혈청 바이오마커: 체계적 문헌 고찰과 메타분석 (Serum Biomarkers for Cardiovascular Disease and Atrial Fibrillation in Ischemic Stroke: A Systematic Review and Meta-Analysis)

  • 우명수;문소라;이지영
    • 대한임상검사과학회지
    • /
    • 제54권4호
    • /
    • pp.256-264
    • /
    • 2022
  • 허혈성 뇌졸중은 뇌동맥의 혈전이나 색전에 의해 폐색되어 산소가 포함된 혈액이 뇌에 도달하는 것을 방지하고, 신경 세포의 괴사를 유발하는 것이다. 본 연구의 목적은 지금까지 연구된 허혈성 뇌졸중의 조기 진단을 가능하게 하는 심혈관 질환 및 심방세동 질환과 관련된 혈청 후보 마커를 정리하고, 각 마커의 OR을 비교 분석하는 것이다. 본 연구에서는 메타분석 기법을 이용하여 혈청 후보 마커의 효과 크기를 분석하고자 하였다. '심혈관질환', '심방세동', '허혈성 뇌졸중', '혈청 표지자'를 키워드로 포함하는 논문에 대한 학술 Database 검색에서 추출된 데이터는 모두 허혈성 뇌졸중 환자에 대한 결과로 제한하였다. 이 연구에서 가장 많이 검색된 마커는 NT-proBNP, D-dimer, CRP 및 GFAP 등으로 나타났다. 결론적으로, NT-proBNP는 허혈성 뇌졸중의 조기 진단에 매우 유용한 것으로 보이며, 특히 심방세동(AF)의 표지자로 알려져 있으며, 앞으로 더 많은 심방세동 표지자가 발굴되어 연구되어야 할 것이다.