• Title/Summary/Keyword: glass structure

Search Result 1,645, Processing Time 0.031 seconds

Tensile Properties of Hybrid FRP Rods with Glass and Carbon Fibers (유리와 탄소섬유로 제작된 하이브리드 FRP 로드의 인장특성에 관한 실험연구)

  • You, Yong-Jun;Park, Ji-Sun;Park, Young-Hwan;Kim, Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.275-282
    • /
    • 2006
  • Recently, Fiber Reinforced Polymers(FRP) has been emerged as an alternative material to solve the corrosion of steel reinforcement in reinforced concrete structures. FRP exhibits higher specific strength and lower weight compared to steel reinforcement. Moreover, good resistance to corrosion of the FRP may be useful in aggressive environments causing deterioration such as chloride environment. However, causes for higher initial cost of FRP than that of steel, little information on the long-term behavior of FRP, and brittle failure make the efforts to apply FRP in civil structures slow. Glass fiber among the fibers used to manufacture FRP can be seen as the most beneficial material with regard to initial costs. But its low elastic modulus, which attains barely a quarter of steel, nay thus lead to excessive deflections when used as reinforcement for flexural members. This research was carried out on the tensile properties of hybrid rods made with glass and carbon fibers to improve those of FRP rod made with glass fiber. Parameters were resin type and the arrangement of glass and carbon fibers. The tensile properties of hybrid rods were compared with those of rods manufactured with only glass or carbon fibers. The results indicated that the tensile properties of hybrid rod were good when the carbon fiber was arranged in the core.

Development of novel oxyfluoride glasses and glass ceramics for photoluminescence material by a containerless processing (무용기 용융법을 활용한 형광소재용 결정화 유리 개발)

  • Hyerin Jo;Minsung Hwang;Youngjin Lee;Jaeyeop Chung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.5
    • /
    • pp.181-186
    • /
    • 2023
  • In this study, novel Eu2O3-BaF2-La2O3-B2O3 oxyfluoride glasses and glass ceramics were developed by a containerless processing. Differential thermal analysis (DTA) analysis was performed to analyze the thermophysical properties of oxyfluoride glasses doped with Eu2O3, and photoluminescence (PL) characteristics were analyzed to evaluate the luminous efficiency depending on the degree of crystallinity. The glass transition temperature decreased with increasing BaF2 concentration since BaF2 acts as a network modifier in this glass system. In addition, thermal stability which can be estimated by the difference between the glass transition temperature and the onset temperature of the crystallization decreased with increasing BaF2 contents. The peak related to the BaF2 crystal was confirmed after the crystallization by X-ray Diffraction (XRD) analysis. Photoluminescence intensity increased after the crystallization which indicates that the Eu3+ ions are sited in BaF2 crystal. La 3d5/2 x-ray photoelectron spectroscopy (XPS) and F1s XPS spectra were analyzed to precisely understand the behavior of the fluorine ion in the glass structure. Fluorine tends to bond with the network modifying cations such as La3+ and Ba2+ ions and after the crystallization the La-F bonds decreased because F- ions used to form BaF2 crystals.

Localisation of embedded water drop in glass composite using THz spectroscopy

  • Mieloszyk, Magdalena;Majewska, Katarzyna;Ostachowicz, Wieslaw
    • Smart Structures and Systems
    • /
    • v.21 no.6
    • /
    • pp.751-759
    • /
    • 2018
  • Glass fibre reinforced polymers (GFRP) are widely exploited in many industrial branches. Due to this Structural Health Monitoring systems containing embedded fibre optics sensors are applied. One of the problems that can influence on composite element durability is water contamination that can be introduced into material structure during manufacturing. Such inclusion can be a damage origin significantly decreasing mechanical properties of an element. A non-destructive method that can be applied for inspection of an internal structure of elements is THz spectroscopy. It can be used for identifications of material discontinuities that results in changes of absorption, refractive index or scattering of propagating THz waves. The limitations of THz propagation through water makes this technique a promising solution for detection of a water inclusion. The paper presents an application of THz spectroscopy for detection and localisation of a water drop inclusion embedded in a GFRP material between two fibre optics with fibre Bragg grating sensors. The proposed filtering method allowed to determine a 3D shape of the water drop.

The Optical and Electrical Properties of Vacuum-Deposited Thin Films using Europium Complex [Eu(TTA)$_3$(phen)]

  • 이명호;김영관;이한성;김정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.53-56
    • /
    • 1998
  • Electroluminescent(EL) devices based on organic materials have been of great interest due to their possible applications for large-area flat-panel displays, where they are attractive because of their capability of multicolor emission, and low operation voltage. In this study, glass substrate/ITO/Eu(TTA)$_3$(Phen)/Al(A), glass substrate/ITO/TPD/Eu(TTA)$_3$(p-hen)/Al(B) and glass substrate/ITO/TPD/Eu(TTA)$_3$(phen)/AlQ$_3$/Al(C) structures were fabricated by vacuum evaporation method. where aromatic diamine(TPD) was used as a hole transporting material, Eu(TTA)$_3$(phen) as an emitting material. and tris(8-hydroxyquinoline)Aluminum(AlQ$_3$) as an electron transporting layer. Electroluminescent(EL) and I-V characteristics of Eu(TTA)$_3$(Phen) with a various thickness were investigated. This structure shows the red EL spectrum, which is almost the same as the PL spectrum of Eu(TTA)$_3$(phen). I-V characteristics of this structure show that turn-on voltage was 9V and current density was 0.01A/$\textrm{cm}^2$ at a dc operation voltage of 9V. Electrical transporting phenomena of these structures was explained using the trapped- charge-limited current model with I-V characteristics.

  • PDF

Flow Stress and Deformation Behavior of Zr-based Bulk Metallic Glass Composite in Supercooled Liquid Region (Zr계 비정질 복상 합금의 과냉 액상 영역에서의 유동 음력과 변형거동)

  • Jun, H.J.;Lee, K.S.;Chang, Y.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.417-420
    • /
    • 2006
  • The composition and structure of dendrite phase within $Zr_{76.11}Ti_{4.20}Cu_{4.51}Ni_{3.16}Be_{1.49}Nb_{10.53}$ bulk metallic glass (BMG) were confirmed by using an EPMA, XRD and TEM, respectively. The chief elements of dendrite phase were Zr-Ti-Nb and had a BCC structure. The thermal properties of this BMG have been then subsequently investigated by using a differential scanning calorimeter (DSC). The glass transition and crystallization onset temperatures were determined as $339.7^{\circ}C$ and $375.8^{\circ}C$ for this alloy, respectively. Mechanical properties have also been examined by conducting a series of uniaxial compression tests at various temperatures within supercooled liquid region under the strain rates between $10^{-4}/s$ and $3{\times}10^{-2}/s$. The deformation behavior of BMG composite within supercooled liquid region is similar to one of Vit-1 exhibiting amorphous single phase alloy. The flow stresses of BMG composite, however, are entirely higher than those of Vit-1 because dendrite phases are interfere with moving of atoms.

  • PDF

Improvement Effect of the Sound Insulation Performance of the Corrugated Steel Panel by Sound Absorbing and Damping Materials (흡음 및 댐핑재 의한 주름강판의 차음성능 개선효과)

  • Kim, Seock-Hyun;Seo, Tae-Gun;Kim, Jung-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.5
    • /
    • pp.476-480
    • /
    • 2010
  • In the corrugated steel panels used for railway vehicles, sound insulation performance is significantly deteriorated by local resonance effect. In this study, as a countermeasure, polyurethane foam is filled in the corrugated steel panel and glass wool layer is inserted in the layered floor panel, and then improvement effect of the sound insulation performance is experimentally estimated. Based on ASTM E2249-02, intensity transmission loss is measured and estimated on the corrugated panel and floor structure. The aim of the study is to identify how the foam filling and inserting glass wool layer improve the sound insulation performance of the train body structure in aspect of the weight increment.

A Study on the Flexural Property of Glass Fiber Filled Coextruded Wood Plastic Composites (유리섬유가 충전된 공압출 목재.플라스틱 복합재의 굽힘 특성에 관한 연구)

  • Kim, Birm-June
    • Journal of the Korea Furniture Society
    • /
    • v.24 no.4
    • /
    • pp.379-388
    • /
    • 2013
  • In this study, the effect of various glass fiber (GF) contents in a shell layer and shell thickness changes on the flexural property of coextruded wood plastic composites (WPCs) in combination with three core systems (weak, moderate, and strong) was investigated. GF behaved as an effective reinforcement for the whole coextruded WPCs and GF alignments in the shell layer played an important role in determining the flexural property of the coextruded WPCs. At a given shell thickness, the flexural property of the whole coextruded WPCs was improved with the increase of GF content in shell. For core quality, when the core is weak, increase of GF content in shell led to improved flexural property of the whole composites and increase of shell thickness helped it. On the other hand, when the core is strong, the flexural property of the whole composites showed reduced features at low GF content in shell and increase of shell thickness aggravated it. This approach provides a method for optimizing performance of the coextruded WPCs with various combinations of core-shell structure and properties.

  • PDF

Research about the Evaporative Cooling Sleeve of 3.6 MW Wind Generator Stator

  • Yu, Shunzhou;Yang, Jie;Yuan, Jiayi;Tian, Xindong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.61-66
    • /
    • 2014
  • The evaporative cooling technology used in Wind generator stator has unique advantages. Combined with the structure of motor stator and operating conditions, this report based on the research project for the evaporative cooling sleeve of the 3.6MW wind generator, introduces the material requirements and structural characteristics of the sleeve, simulates on the stress, displacement and stability by finite analysis method, and tests the products experimentally. The research results show that the epoxy resin-glass materials have a higher strength and better insulation properties, but the evaporative cooling of the wind generator stator sleeve, because of its thin-walled, and the external pressure, so it's the less rigid. Should make full use of the motor stator core structure, increase its stiffness and improve the stability of the epoxy resin-glass sleeve, which for thin-walled the epoxy resinglass sleeve on the successful application of wind turbines has played an important role.

Low Velocity Impact Behavior of Aluminium and Glass-Fiber Honeycomb Structure (알루미늄과 유리섬유 하니컴 구조의 저속 충격 거동)

  • Kim, Jin Woo;Won, Cheon;Lee, Dong Woo;Kim, Byung Sun;Bae, Sung In;Song, Jung Il
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.116-122
    • /
    • 2013
  • In this study, impact behavior of aluminium and glass-fiber structure is studied under low impact velocity. Compression test is carried out to investigate the compressive strength of the specimens. The degree of damage is observed using microscopy and compared with the experimental analysis data. The maximum load capacity, impact strength and elastic energy of glass-fiber honeycomb sandwich panel are more than the aluminium honeycomb sandwich panel.

Studies on The Optical and Electrical Properties of Europium Complex (Europium compound박막의 전기적 광학적 특성에 관한 연구)

  • 이명호;표상우;김영관;김정수;이한성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.317-320
    • /
    • 1998
  • Electroluminescent(EL) devices based on organic materials have been of great interest due to their possible applications for large-area flat-panel displays, where they are attractive because of their capability of multicolor emission, and low operation voltage. In this study, glass substrate/ITO/Eu(TTA)$_3$(Phen)/Al(A), glass substrate/ITO/TPD/Eu(TTA)$_3$(phen)/Al(B) aNd glass substrate/ITO/TPD/Eu(TTA)$_3$(Phen)/A1Q$_3$/Al (C) structures were fabricated by vacuum evaporation method, where aromatic diamine(TPD) was used as a hole transporting material, Eu(TTA)$_3$(phen) as an emitting material, and tris(8-hydroxyquinoline) Aluminum (AlQ$_3$) as an electron transporting layer. Etectroluminescent(EL) and I-V characteristics of Eu(TTA)$_3$(phen) with a various thickness were investigated. This structure shows the red EL spectrum, which is almost the same as the PL spectrum of Eu(TTA)$_3$(phen). I-V characteristics of this structure show that turn-on voltage was 9V and current density was 0.01A/㎤ at a dc operation voltage of 9V. Electrical transporting phenomena of these structures was explained using the trapped-charge-limited current model with I-V characteristics.

  • PDF