• Title/Summary/Keyword: glass structure

Search Result 1,644, Processing Time 0.029 seconds

Mechanical and elastic properties of vitrified radioactive wastes using ultrasonic technique

  • Sema Akyil Erenturk;Filiz Gur;Mahmoud A.A. Aslani
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.472-476
    • /
    • 2024
  • It is important that radioactive and nuclear wastes are immobilized in a glass composition with lower melting temperatures due to their economy. In this study, the elastic and mechanical properties of sodium borate-based vitrified radioactive waste were measured using ultrasonic techniques. Many ultrasonic parameters, such as elastic moduli, Poisson's ratio, and microhardness, were calculated by measuring the ultrasonic velocities of the glasses. The ultrasonic velocity data, the density, the calculated elastic moduli, micro-hardness, softening temperature, and Debye temperature depending on the glass composition were evaluated, and the relation with the structure was clarified. It was observed that the elastic modulus and Poisson ratio increased as the Cs2O content increased in glasses containing Cs waste. This result shows that the rigidity of the network structure of these glasses increases in contrast to the glass containing Sr.

An experimental study on the preparation and property of the sintering aggregate using fly ash (플라이애쉬를 이용한 소성골재의 제조 및 특성에 관한 연구)

  • 박대영;김도수;박종현;임채영;노재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.239-244
    • /
    • 1998
  • Fusion temperature of fly ash was determined with wasted glass wool and borax using ash fusion determinator, 0.5wt% of bentonite and water glass used as binder, 50wt% of wasted glass wool added to fly ash, fusion temperature of fly ash was 1, 156$^{\circ}C$. Pellet was prepared, and then sintered at 1, 00$0^{\circ}C$ and 1, 10$0^{\circ}C$. Water-absorption rate, specific gravity, porosity and pore structure of sintering aggregate was determined.

  • PDF

Fabrication of 3D Micro Structure by Dual Diffuser Lithography (듀얼 디퓨저 리소그래피를 이용한 3 차원 마이크로 구조의 제작)

  • Han, Dong-Ho;Hafeez, Hassan;Ryu, Heon-Yul;Cho, Si-Hyeong;Park, Jin-Goo
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.447-452
    • /
    • 2013
  • Recently, products that a have 3-dimensional(3D) micro structure have been in wide use. To fabricate these 3D micro structures, several methods, such as stereo lithography, reflow process, and diffuser lithography, have been used. However, these methods are either very complicated, have limitations in terms of patterns dimensions or need expensive components. To overcome these limitations, we fabricated various 3D micro structures in one step using a pair of diffusers that diffract the incident beam of UV light at wide angles. In the experiment, we used positive photoresist to coat the Si substrate. A pair of diffusers(ground glass diffuser, opal glass diffuser) with Gaussian and Lambertian scattering was placed above the photomask in the passage of UV light in the photolithography equipment. The incident rays of UV light diffracted twice at wider angles while passing through the diffusers. After exposure, the photoresist was developed fabricating the desired 3D micro structure. These micro structures were analyzed using FE-SEM and 3D-profiler data. As a result, this dual diffuser lithography(DDL) technique enabled us to fabricate various microstructures with different dimensions by just changing the combination of diffusers, making this technology an efficient alternative to other complex techniques.

Effect of Substituting B2O3 for P2O5 in Conductive Vanadate Glass

  • Choi, Suyeon;Kim, Jonghwan;Jung, Jaeyeop;Park, Hyeonjoon;Ryu, Bongki
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.140-145
    • /
    • 2015
  • In this study, we verified the relationship among the electrical conductivity, chemical durability, and structure of conductive vanadate glass in which $BO_3$ and $BO_4$ and $V^{4+}$ and $V^{5+}$ coexist simultaneously. We prepared samples of vanadium borophosphate glass with various compositions, given by $50V_2O_5-xB_2O_3-(50-x)P_2O_5$(x = 0 ~ 20 mol%) and $70V_2O_5-xB_2O_3-(70-x)P_2O_5$(x = 0 ~ 10 mol%), and analyzed the electrical conductivity, chemical durability, FT-IR spectroscopy, thermal properties, density, and molar volume. Substituting $B_2O_3$ for $P_2O_5$ was found to improve the electrical conductivity, chemical durability, and thermal properties. From these results, we can draw the following conclusions. First, the electrons shift from the electron rich $V^{4+}$ to the electron deficient $BO_3$ as the $B_2O_3$ content increases. Second, the improvement in chemical durability and thermal properties is attributed to an increase in cross-linked structures by changing from a $BO_3$ structure to a $BO_4$ structure.

Optical and Electrical Properties of ZnO Hybrid Structure Grown on Glass Substrate by Metal Organic Chemical Vapor Deposition (유기금속화학증착법으로 유리기판 위에 성장된 산화아연 하이브리드 구조의 광학적 전기적 특성)

  • Kim, Dae-Sik;Kang, Byung Hoon;Lee, Chang-Min;Byun, Dongjin
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.543-549
    • /
    • 2014
  • A zinc oxide (ZnO) hybrid structure was successfully fabricated on a glass substrate by metal organic chemical vapor deposition (MOCVD). In-situ growth of a multi-dimensional ZnO hybrid structure was achieved by adjusting the growth temperature to determine the morphologies of either film or nanorods without any catalysts such as Au, Cu, Co, or Sn. The ZnO hybrid structure was composed of one-dimensional (1D) nanorods grown continuously on the two-dimensional (2D) ZnO film. The ZnO film of 2D mode was grown at a relatively low temperature, whereas the ZnO nanorods of 1D mode were grown at a higher temperature. The change of the morphologies of these materials led to improvements of the electrical and optical properties. The ZnO hybrid structure was characterized using various analytical tools. Scanning electron microscopy (SEM) was used to determine the surface morphology of the nanorods, which had grown well on the thin film. The structural characteristics of the polycrystalline ZnO hybrid grown on amorphous glass substrate were investigated by X-ray diffraction (XRD). Hall-effect measurement and a four-point probe were used to characterize the electrical properties. The hybrid structure was shown to be very effective at improving the electrical and the optical properties, decreasing the sheet resistance and the reflectance, and increasing the transmittance via refractive index (RI) engineering. The ZnO hybrid structure grown by MOCVD is very promising for opto-electronic devices as Photoconductive UV Detectors, anti-reflection coatings (ARC), and transparent conductive oxides (TCO).

A Comparative Study on the High-rise Building Designs by Frank Lloyd Wright and Mies van der Rohe (프랭크 로이드 라이트와 미즈 반 데르 로우의 고층건물 디자인 비교연구)

  • Kwon, Jong-Wook
    • Journal of architectural history
    • /
    • v.14 no.3 s.43
    • /
    • pp.89-102
    • /
    • 2005
  • Frank Lloyd Wright and Mies van der Rohe are two of the most influential architects in modern architecture. In spite of the different values in their architectural lives, the design of high-rise building had been a continuous matter of primary concern for them. The purpose of this study is to compare the architectural characteristics of the two master architects in terms of building form, structure, function, and envelop skin. glass. Both of them shared with the principle of organic architecture even in the design of high-rise buildings. However, the specific approaches to realize it in high-rise buildings are significantly different. Although they emphasized the integration of building form and structure, Wright regarded the reinforced concrete structure as an organic form-giver, while Mies introduced the steel skeleton structure only as an efficient and flexible building frame. As primary finishing materials for high-rise buildings, glass was used for functional purpose by Wright, but for visual purpose by Mies.

  • PDF

Theoretical and experimental modal responses of adhesive bonded T-joints

  • Kunche, Mani Chandra;Mishra, Pradeep K.;Nallala, Hari Babu;Hirwani, Chetan K.;Katariya, Pankaj V.;Panda, Subhransu;Panda, Subrata K.
    • Wind and Structures
    • /
    • v.29 no.5
    • /
    • pp.361-369
    • /
    • 2019
  • The modal frequency responses of adhesive bonded T-joint structure have been analyzed numerically and verified with own experimental data. For this purpose, the damped free frequencies of the bonded joint have been computed using a three-dimensional finite element model via ANSYS parametric design language (APDL) code. The practical relevance of the joint structure analysis has been established by comparing the simulation data with the in-house experimental values. Additionally, the influences of various geometrical and material parameters on the damped free frequency responses of the joint structure have been investigated and final inferences discussed in details. It is observed that the natural frequency values increase for the higher aspect ratios of the joint structure. Also, the joint made up of Glass fiber/epoxy with quasi-isotropic fiber orientation indicates more resistance towards free vibration.

A study on the fabrication of foamed glass by using refused coal ore and its physical properties (석탄 폐석을 이용한 발포유리의 제조 및 물리적 특성 연구)

  • Lim, Tae-Young;Ku, Hyun-Woo;Hwang, Jong-Hee;Kim, Jin-Ho;Kim, Jung-Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.6
    • /
    • pp.266-273
    • /
    • 2011
  • Foamed glass was fabricated by using glass powder and foaming agents. For the glass powder, we used sodalime glass which's manufactured by using refused coal ore obtained as by-product from Dogye coal mine in Samcheok. And for the foaming agents, we used Calcium carbonate, Calcium phosphate and powder of shale type refused coal ore itself which has high content of carbon materials. We additionally used liquid binder for forming, and mixed together. And we formed rectangular shape and treated $800^{\circ}C$ for 20 min in an electrical furnace. The various kinds of foam glass samples were fabricated according to the kinds of foaming agents. The physical properties of samples, as specific gravity and compressive strength, were measured. Pore structure of each samples were investigated too. Foam glass with specific gravity of 0.4~0.7 and compressive strength of 30~72 kg/$cm^2$. Especially we get satisfying foam glass sample with low specific gravity of 0.47 and high compressive strength of 72 kg/$cm^2$ by the use of liquid calcium phosphate as foaming agent. It also had small and even shape of pore structure. Therefore, it is concluded that refused coal ore can be used for raw materials to manufacture secondary glass products such as a foamed glass panel for construction and industrial materials.

Na Borosilicate Glass Surface Structures: A Classical Molecular Dynamics Simulations Study (소듐붕규산염 유리의 표면 구조에 대한 분자 동역학 시뮬레이션 연구)

  • Kwon, Kideok D.;Criscenti, Louise J.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.119-127
    • /
    • 2013
  • Borosilicate glass dissolution is an important chemical process that impacts the glass durability as nuclear waste form that may be used for high-level radioactive waste disposal. Experiments reported that the glass dissolution rates are strongly dependent on the bulk composition. Because some relationship exists between glass composition and molecular-structure distribution (e.g., non-bridging oxygen content of $SiO_4$ unit and averaged coordination number of B), the composition-dependent dissolution rates are attributed to the bulk structural changes corresponding to the compositional variation. We examined Na borosilicate glass structures by performing classical molecular dynamics (MD) simulations for four different chemical compositions ($xNa_2O{\cdot}B_2O_3{\cdot}ySiO_2$). Our MD simulations demonstrate that glass surfaces have significantly different chemical compositions and structures from the bulk glasses. Because glass surfaces forming an interface with solution are most likely the first dissolution-reaction occurring areas, the current MD result simply that composition-dependent glass dissolution behaviors should be understood by surface structural change upon the chemical composition change.