• 제목/요약/키워드: glass stability

검색결과 543건 처리시간 0.03초

가공정도 향상을 위한 Glass Cutting Machine의 설계 개선 (Design Modifications of a Glass Cutting Machine for the Improved Stability)

  • 권인환;노승훈;박유라;이일환;길사근;박근우
    • 한국기계가공학회지
    • /
    • 제13권3호
    • /
    • pp.6-14
    • /
    • 2014
  • Touch panels are widely used in the modern display industry as the cover glass of smart mobile phones and tablet PCs. Glass cutting machines are commonly used to cut the panels into their proper sizes. Vibration of these glass cutting machines is assumed to be the main factor leading to the creation of burrs, notches, cracks, scratches and chips on the cut surfaces, eventually causing defects of the cover glass. In this study, the vibrations of a glass cutting machine used for the shearing of cover glass components were analyzed through an experiment and a computer simulation. The structural properties leading to vibration were also analyzed in an effort to determine design alterations which can suppress these vibrations. Moreover, each design alteration was applied to a computer simulation model to determine the effect of different alteration on suppressing vibration. The results show that simple design alterations can substantially suppress vibrations of glass cutting machines.

SOFC용 유리-세라믹섬유 복합기밀재의 고온 기체누설 거동 (High Temperature Gas Leak Behavior of Glass-Ceramic Fiber Composite Seals for SOFC Applications)

  • 이재춘;권혁천;권영필;박성;장진식;이종호;김주선;이해원
    • 한국세라믹학회지
    • /
    • 제42권12호
    • /
    • pp.842-845
    • /
    • 2005
  • Glass composites containing ceramic fiber have been developed for Solid Oxide Fuel Cell (SOFC) seals. Effect of glass type, loading pressure and thermal cycle the leak rates of composite seals was investigated. Seal performance of two commercial glasses was compared with that of $SiO_2BaO-B_2O_3$ glass synthesized in this work. The leak rate for seals made of pyrex(R) increases from $\~0.0005\;to\;\~0.004sccm/cm$ as the gas pressure increases from 10 to 50 kPa. The soda lime silicate glass seal shows the leak rate two times higher than the one made of pyrex(R) or $SiO_2BaO-B_2O_3$ glass. The viscosity of glass at the seal test temperature is presumed to affect the leak rate of the glass seal. As the applied loading pressure increases from 0.4 to 0.8 MPa at $750^{\circ}C$, the leak rate decreases from 0.038 to 0.024 sccm/cm for composite seals. It has been found that during 50 thermal cycles between $450^{\circ}C\;to\;700^{\circ}C$ leak rates remained almost constant, ranging from 0.025 to 0.03sccm/cm. The results showed an excellent thermal cycle stability as well as sealability of the glass matrix ceramic fiber composite seals.

전고체전지용 붕산염 유리 세라믹 고체 전해질의 조성비에 따른 소결 특성 연구 (Sintering Behavior of Borate-Based Glass Ceramic Solid Electrolytes for All-Solid Batteries)

  • 이정민;정동석;강성현;;최은하;신원호
    • 한국전기전자재료학회논문지
    • /
    • 제37권4호
    • /
    • pp.445-450
    • /
    • 2024
  • The expansion of lithium-ion battery usage beyond portable electronic devices to electric vehicles and energy storage systems is driven by their high energy density and favorable cycle characteristics. Enhancing the stability and performance of these batteries involves exploring solid electrolytes as alternatives to liquid ones. While sulfide-based solid electrolytes have received significant attention for commercialization, research on amorphous-phase glass solid electrolytes in oxide-based systems remains limited. Here, we investigate the glass transition temperatures and sintering behaviors by changing the molecular ratio of Li2O/B2O3 in borate glass comprising Li2O-B2O3-Al2O3 system. The glass transition temperature is decreasing as increasing the amount of Li2O. When we sintered at 450℃, just above the glass transition temperature, the samples did not consolidate well, while the proper sintered samples could be obtained under the higher temperature. We successfully obtained the borate glass ceramics phases by melt-quenching method, and the sintering characteristics are investigated. Future studies could explore optimizing ion conductivity through refining processing conditions, adjusting the glass former-to-modifier ratio, and incorporating additional Li salt to enhance the ionic conductivity.

Stability of hydrophobic properties of plasma polymerized tetrakis(trimethylsilyloxy)silane film surface

  • Jang, Jinsub;Woo, Sungmin;Ban, Wonjin;Nam, Jaehyun;Lee, Yeji;Choi, Woo Seok;Jung, Donggeun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.147.1-147.1
    • /
    • 2016
  • Hydrophobic thin films are variously applicable for encapsulation of organic devices and water repulsive glass, etc. In this work, the stability of hydrophobic characteristics of plasma polymerized tetrakis (trimethylsilyloxy) silane (ppTTMSS) thin films were investigated. The films were deposited with plasma enhanced chemical vapor deposition (PECVD) on the glass. The deposition plasma power and deposition pressure was 70 W and 600 mTorr, respectively. Thereafter, deposited films were treated by 248nm KrF excimer laser. Stability of hydrophobic properties of plasma polymerized tetrakis(trimethylsilyloxy)silane film surface was tested by excimer laser irradiation, which is thought to simulate severe outdoor conditions. Excimer laser irradiation cycles changed from 10 to 200 cycles. The chemical structure and hydrophobicity of ppTTMSS films were analyzed by using Fourier transform infrared (FTIR) spectroscopy and water contact angle (WCA) measurement, respectively. Absorption spectra peaks and WCA of excimer laser treated ppTTMSS films did not change notably. These results show that our ppTTMSS films possess stable hydrophobic properties.

  • PDF

Thermal Stability of Trifunctional Epoxy Resins Modified with Nanosized Calcium Carbonate

  • Jin, Fan-Long;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권2호
    • /
    • pp.334-338
    • /
    • 2009
  • Trifunctional epoxy resin triglycidyl paraaminophenol (TGPAP)/$CaCO_3$ nanocomposites were prepared using the melt blending method. The effects of nano-$CaCO_3$ content on the thermal behaviors, such as cure behavior, glass transition temperature ($T_g$), thermal stability, and the coefficient of thermal extension (CTE), were investigated by several techniques. Differential scanning calorimetry (DSC) results indicated that the cure reaction of the TGPAP epoxy resin was accelerated with the addition of nano-$CaCO_3$. When the nano-$CaCO_3$ content was increased, the $T_g$ of the TGPAP/$CaCO_3$ nanocomposites did not obviously change, whereas the crosslinking density was linearly increased. The nanocomposites showed a higher thermal stability than that of the neat epoxy resin. This result could be attributed to the increased surface contact area between the nano-$CaCO_3$ particles and the epoxy matrix, as well as the high crosslinking density in the TGPAP/$CaCO_3$ nanocomposites. The CTE of the nanocomposites in the rubbery region was significantly decreased as the nano-$CaCO_3$ content was increased.

Effect of recycled glass powder on asphalt concrete modification

  • Bilondi, M. Pourabbas;Marandi, S.M.;Ghasemi, F.
    • Structural Engineering and Mechanics
    • /
    • 제59권2호
    • /
    • pp.373-385
    • /
    • 2016
  • During recent years researchers performed large effort to increase the service life and asphalt stability of the roads against traffic loads and weather conditions. Investigations carried out in various aspects such as changes in gradation, addition of various additives, changes in asphalt textures and etc. The objective of this research is to evaluate the advantages of adding recycled glass powder (RGP), Crumb Rubber (CR), styrene-butadiene rubber (SBR) and styrene butadiene styrene (SBS) to base bitumen with grade of 60/70 for modification of asphalt concrete. Initial studies conducted for determining the physical properties of bitumen and modifiers. A series of asphalt concrete samples made using various combinations of RGP, CR, SBR, SBS and base bitumen. All samples tested using Indirect Tensile Strength (ITS), Indirect Tensile Strength Modulus (ITSM) and Marshall Stability Tests. The new data compared with the results of control samples. The results showed that replacing RGP with known polymers improved ITS and ITSM results considerably. Also the Marshall Stability of modified mixtures using RGP is more than what is found for the base blend. Ultimately, the new RGP modifier had a huge impact on pavement performance and results in high flexibility which can be concluded as high service life for the new modified asphalt concrete.

Effect of volume fraction on stability analysis of glass fibre reinforced composite plate

  • Mini, K.M.;Lakshmanan, Mahadevan;Mathew, Lubin;Kaimal, Girish
    • Steel and Composite Structures
    • /
    • 제12권2호
    • /
    • pp.117-127
    • /
    • 2012
  • This paper deals with an experimental investigation to study the effect of fibre content on the stability of composite plates with various aspect ratios. Epoxy based glass fibre reinforced composite plates with aspect ratio varying from 0.4 to 1 and with volume fractions of 0.36, 0.4, 0.46, 0.49 and 0.55 are used for the investigation. From the study it is observed that for plate with aspect ratio of 0.5 and 0.4 there is no buckling and the plate got crushed at the middle. As the volume fraction increases the buckling load also increases to a limit and then began to reduce with further increase in fibre content. The optimum range of fibre content for maximum stability is found between 0.49 and 0.55. Polynomial expressions are developed for the study of buckling behaviour of composite plates with different volume fractions in terms of load and aspect ratio.

Evaluating thermal stability of rare-earth containing wasteforms at extraordinary nuclear disposal conditions

  • Kim, Miae;Hong, Kyong-Soo;Lee, Jaeyoung;Byeon, Mirang;Jeong, Yesul;Kim, Jong Hwa;Um, Wooyong;Kim, Hyun Gyu
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2576-2581
    • /
    • 2021
  • The thermal stability and crystallization behaviors of La2O3 containing B2O3-CaO-Al2O3 glass waste forms were investigated to evaluate the stability of waste form during emergencies in deep geological disposal. For glasses containing 15% La2O3, LaBO3 phases were observed as major crystals from 780 ℃ and exhibited needlelike structures. Al, Ca, and O were homogeneously distributed throughout the entire specimen, while some portions of B and La were concentrated in some parts. By differential thermal analysis at various heating rates, the activation energy for grain growth and the crystallization rate of LaBO3 were calculated to be 12.6 kJ/mol and 199.5 kJ/mol, respectively. These values are comparable to other waste forms being developed for the same purpose.

타액 중 ${\Delta}^9$-Tetrahydrocannabinol 및 11-Nor-9-carboxy-${\Delta}^9$-Tetrahydrocannabinol의 분석법 확립 및 안정성 검토 (Development of Quantification Method and Stability of ${\Delta}^9$-Tetrahydrocannabinol and 11-Nor-9-carboxy-${\Delta}^9$-Tetrahydrocannabinol in Oral Fluid)

  • 최혜영;백승경;장문희;최화경;정희선
    • 약학회지
    • /
    • 제54권4호
    • /
    • pp.226-231
    • /
    • 2010
  • Oral fluid has become increasingly popular as an alternative specimen in the field of driving under the influence of drugs (DUID) and work place drug testing. In this study, an analytical method for the detection and quantification of ${\Delta}^9$-tetrahydrocannabinol (THC) and its metabolite, 11-nor-9-carboxy-${\Delta}^9$-tetrahydrocannabinol (THC-COOH) in oral fluid by SPE and GC-MS was established and fully validated. The stability of THC and THC-COOH in oral fluid during storage was also determined by examining the THC and THC-COOH concentration changes depending on time and container materials. Oral fluid samples were kept over 21 days at room temperature, $-4^{\circ}C$ and $-20^{\circ}C$ in two different specimen collection tubes; glass and polypropylene tubes. Three replicates for each condition with different temperature and types of a container were analyzed at five different time points over 21 days. When oral fluid samples were stored in glass tubes, the loss of both THC and THC-COOH was less than 10% at all room temperature, $-4^{\circ}C$ and $-20^{\circ}C$. However, in polypropylene tubes, the loss of both THC and THC-COOH increased significantly over the study period. In particular, the concentration of THC decreased more rapidly than that of THC-COOH at room temperature and the maximal percentage of THC lost was 90.3% after 21 days. The result indicates that it would be necessary to collect oral fluid samples in glass containers and cool the samples until analysis in order to prevent the degradation of analytes.

The Effect of Thickness on Flexible, Electrical and Optical properties of Ti- ZnO films on Flexible Glass by Atomic Layer Deposition

  • 이우재;윤은영;권세훈
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.196.1-196.1
    • /
    • 2016
  • TCO(Transparent Conducting Oxide) on flat glass is used in thin-film photovoltaic cell, flat-panel display. Nowadays, Corning(R) Willow Glass(R), known as flexible substrate, has attracted much attention due to its many advantages such as reliable roll-to-roll glass processing, high-quality flexible electronic devices, high temperature process. Also, it can be an alternative to flexible polymer substrates which have their poor stability and degradation of electrical and optical qualities. For application on willow glass, the flexibility, electrical, optical properties can be greatly influenced by the TCO thin film thickness due to the inherent characterization of thin film in nanoscale. It can be expected that while thick TCO layer causes poor transparency, its sheet resistance become low. Also, rarely reports were focusing on the influence of flexible properties by varying TCO thickness on flexible glass. Therefore, it is very important to optimize TCO thickness on flexible Willow glass. In this study, Ti-ZnO thin films, with different thickness varied from 0 nm to 50 nm, were deposited on the flexible willow glass by atomic layer deposition (ALD). The flexible, electrical and optical properties were investigated, respectively. Also, these properties of Ti-doped ZnO thin films were compared with un-doped ZnO thin film. Based on the results, when Ti-ZnO thin films thickness increased, resistivity decreased and then saturated; transmittance decreased. The Figure of Merit (FoM) and flexibility was the highest when Ti-ZnO thickness was 40nm. The flexible, electrical and optical properties of Ti-ZnO thin films were better than ZnO thin film at the same thickness.

  • PDF