• Title/Summary/Keyword: glass stability

Search Result 543, Processing Time 0.037 seconds

The Effects of Two Inoculants Applied to Forage Sorghum at Ensiling on Silage Characteristics

  • Guan, Wu-tai;Ashbell, G.;Hen, Y.;Weinberg, Z.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.2
    • /
    • pp.218-221
    • /
    • 2002
  • Whole forage sorghum (saccharatum) cultivar FS5 was harvested at the soft dough ($303{\pm}9g\;kg^{-1}$ DM) stage of maturity. The sorghum was chopped into approximately 20 mm pieces and ensiled under laboratory conditions in 1.5 L Weck glass jars. At ensiling, it was treated with two commercial silage inoculants: Pioneer 1188 (Inoculant A) and Eco-corn (Inoculant B). The inoculant A and B was applied at ca $2{\times}10^5$ or $2{\times}10^4$ colony forming units $g^{-1}$ DM., respectively. Silage with no additives served as a control. Three jars per treatment were opened on days 2, 4, 8, 15 and 60 post-ensiling to study fermentation dynamics. After 60 days of ensiling the silages were analyzed and subjected to an aerobic stability test lasting 5 days. Results showed that both inoculants caused a more rapid rate of pH decrease and a higher amount of lactic acid production. All the silages were well preserved and were stable upon exposure to air. Inoculants did not influence (p>0.05) the ash and total N contents, but tended to reduce acetic acid (p<0.05), butyric acid (p<0.01) and propionic acid (p<0.01) contents, and to increase the lactic acid content (p<0.01). The lower DM content of silages treated with Inoculant A agrees with the greater gas loss resulting from the DM loss, which was in good agreement with the higher yeast counts upon aerobic exposure. Silage treated with inoculant B had the highest DM (p<0.05) and lactic acid contents (p<0.01), and the lowest acetic acid content (p<0.05), which agrees with the rapid reduction of pH and smaller gas loss. Inoculant B reduced the ADF (p<0.01), ADL and NDF (p<0.05) contents, which also indicates smaller losses of organic soluble material. The control silages contained the highest levels of volatile fatty acids but no lactic acid, indicating secondary fermentation. It was concluded that both inoculants may improve the fermentation process, since silages from all treatments were stable upon aerobic exposure, noadvantage could be attributed to any of the inoculants used.

A polymer pH-Selectrode Based on Tribenzylamine as Neutral Carrier (Tribenzylamine 중성운반체를 이용한 pH-선택성 고분자 막전극)

  • Park, Myon-Young;Chung, Koo-Chun;Cho, Dong-Hoe;Lee, Kyeong-Jae;Jeong, Seong-Suk;Park, Sun-Young;Kim, Tae-Hun
    • Analytical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.63-68
    • /
    • 1995
  • For the preparation of pH-selectrode, tribenzylamine, polyvinylchloride, dioctylphthalate, sodium tetraphenylborate and tetrahydrofuran were mixed with 0.02, 0.62, 1.34, 0.02g and 10ml respectively, and added 1g of acetylene black, graphite, silicon carbide or tungsten carbide respectively to improve electric conductivity. The selectrodes of seven kinds were shown linear to hydrogen ion in the range of pH 2 and 9. The best electric conductor for preparation of pH-selectrode based on tribenzylamine as neutral carrier was acetylene black and responded potential of the selectrode to hydrogen ion was shown the values near to theoretical Nernstian slope at $20^{\circ}C$. The interfering effects of the selectrode on hydrogen ion in the presence of alkali and alkaline earth metal ions were shown the better results with less error than glass electrode. The reproducibility and stability were good for use as a selectrode, especially in the presence of fluoride ion.

  • PDF

Preparation of Styrene-Ethyl acylate Core-shell Structured Detection Materials for aMeasurement of the Wall Contamination by Emulsion Polymerization

  • Hwang, Ho-Sang;Seo, Bum-Kyoung;Lee, Dong-Gyu;Lee, Kune-Woo
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.84-85
    • /
    • 2009
  • New approaches for detecting, preventing and remedying environmental damage are important for protection of the environment. Procedures must be developed and implemented to reduce the amount of waste produced in chemical processes, to detect the presence and/or concentration of contaminants and decontaminate fouled environments. Contamination can be classified into three general types: airborne, surface and structural. The most dangerous type is airborne contamination, because of the opportunity for inhalation and ingestion. The second most dangerous type is surface contamination. Surface contamination can be transferred to workers by casual contact and if disturbed can easily be made airborne. The decontamination of the surface in the nuclear facilities has been widely studied with particular emphasis on small and large surfaces. The amount of wastes being produced during decommissioning of nuclear facilities is much higher than the total wastes cumulated during operation. And, the process of decommissioning has a strong possibility of personal's exposure and emission to environment of the radioactive contaminants, requiring through monitoring and estimation of radiation and radioactivity. So, it is important to monitor the radioactive contamination level of the nuclear facilities for the determination of the decontamination method, the establishment of the decommissioning planning, and the worker's safety. But it is very difficult to measure the surface contamination of the floor and wall in the highly contaminated facilities. In this study, the poly(styrene-ethyl acrylate) [poly(St-EA)] core-shell composite polymer for measurement of the radioactive contamination was synthesized by the method of emulsion polymerization. The morphology of the poly(St-EA) composite emulsion particle was core-shell structure, with polystyrene (PS)as the core and poly(ethyl acrylate) (PEA) as the shell. Core-shell polymers of styrene (St)/ethyl acrylate (EA) pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl sulfate (SOS) as an emulsifier using ammonium persulfate (APS) as an initiator. The polymer was made by impregnating organic scintillators, 2,5-diphenyloxazole (PPO) and 1,4-bis[5-phenyl-2-oxazol]benzene (POPOP). Related tests and analysis confirmed the success in synthesis of composite polymer. The products are characterized by IT-IR spectroscopy, TGA that were used, respectively, to show the structure, the thermal stability of the prepared polymer. Two-phase particles with a core-shell structure were obtained in experiments where the estimated glass transition temperature and the morphologies of emulsion particles. Radiation pollution level the detection about under using examined the beta rays. The morphology of the poly(St-EA) composite polymer synthesized by the method of emulsion polymerization was a core-shell structure, as shown in Fig. 1. Core-shell materials consist of a core structural domain covered by a shell domain. Clearly, the entire surface of PS core was covered by PEA. The inner region was a PS core and the outer region was a PEA shell. The particle size distribution showed similar in the range 350-360 nm.

  • PDF

Second Order Nonlinear Optical Polyimides Containing Organic Chromophores with an Oxadiazole Segment (옥사디아졸 결합의 유기 발색단이 도입된 이차비선형 광학 이미드 고분자)

  • Do, Jung Yun;Kim, Bong Gun;Kwon, Ji-Yun
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.77-83
    • /
    • 2007
  • It is essential that second order nonlinear optical materials have low optical propagation losses in the wavelengths of second harmonic generation for practical applications in waveguides. Three dipolar chromophores substituted with nitro, cyano, and alkyl sulfone as an electron withdrawing group were prepared. The UV-Vis absorption spectra of the cyano and alkylsulfone chromophores showed a blue-shift compared to the nitro chromophore. The introduction of oxadiazole segment in the chromophore structure led to similar spectral shift. The blue-shift can produce low optical loses at second harmonics. The chromophores were successfully attached to a polyimide, yielding side chain polymers. The nonlinear optical property of the prepared optical polymers was determined by measuring electro-optic coefficient at 1.55 mm. The polymers exhibited high glass transition temperature of over $185^{\circ}C$ and thermal stability to $300^{\circ}C$ through differential scanning calorimeter analysis and thermal gravimetric analysis.

Synthesis and Characterization of Acrylic-Modified Water-Reducible Alkyd Resin 2. Modification by MA and TMPTA Graft Copolymerization (수용성 아크릴 변성 알키드 수지의 합성과 물성 2. MA 및 TMPTA 공중합체에 의한 변성)

  • Cho, Young-Ho;Kang, Ki-Joon;Noh, Si-Tae
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.698-705
    • /
    • 1994
  • The basic medium oil modified alkyd resin was synthesized from linseed oil fatty acid(LOFA), phthalic anhydride(PAA), maleic anhydride(MA) and trimethylol propane(TMP) by condensation polymerization at $230^{\circ}C$. MA/TMPTA modified water-reducible alkyd resins were synthesized with TMPTA graft copolymerization onto the basic resin at $180^{\circ}C$. Acid value of the resin was controlled by the addition amount of MA and N,N-dimethylethanol amine(DMEA) was used as a neutralizing agent to prepare of the water-reducible alkyd resin. The effect of TMPTA on the graft copolymerization of the resin was studied by measuring molecular weight glass transition temperature(Tg), viscosity, graft efficiency, and gel contents of melanin cured film. Heat resistance, UV resistance and water resistance of cured film of MA/TMPTA modified resin was compared to those of TMA/TMPTA modified alkyd resin. The molecular weight, viscosity gel contents and graft efficiency of water reducible alkyd resin were increased according to the TMPTA graft copolymerization, but Tg was decreased. The viscosity was lower when the solid contents reached 40% than that of 30% content and also and also became lower with the extent of neutralization ratio, The heat resistance, UV resistance and water resistance of the MA/TMPTA modified alkyd resis were better than those of TMA/TMPTA modified alkyd resin but the storage stability of the TMA/TMPTA alkyd resis was better than that of MA/TMPTA modified alkyd resin.

  • PDF

DEVELOPMENT OF THE MECHANICAL STRUCTURE OF THE MIRIS SOC (MIRIS 우주관측카메라의 기계부 개발)

  • Moon, B.K.;Jeong, W.S.;Cha, S.M.;Ree, C.H.;Park, S.J.;Lee, D.H.;Yuk, I.S.;Park, Y.S.;Park, J.H.;Nam, U.W.;Matsumoto, Toshio;Yoshida, Seiji;Yang, S.C.;Lee, S.H.;Rhee, S.W.;Han, W.
    • Publications of The Korean Astronomical Society
    • /
    • v.24 no.1
    • /
    • pp.53-64
    • /
    • 2009
  • MIRIS is the main payload of the STSAT-3 (Science and Technology Satellite 3) and the first infrared space telescope for astronomical observation in Korea. MIRIS space observation camera (SOC) covers the observation wavelength from $0.9{\mu}m$ to $2.0{\mu}m$ with a wide field of view $3.67^{\circ}\times3.67^{\circ}$. The PICNIC HgCdTe detector in a cold box is cooled down below 100K by a micro Stirling cooler of which cooling capacity is 220mW at 77K. MIRIS SOC adopts passive cooling technique to chill the telescope below 200 K by pointing to the deep space (3K). The cooling mechanism employs a radiator, a Winston cone baffle, a thermal shield, MLI (Multi Layer Insulation) of 30 layers, and GFRP (Glass Fiber Reinforced Plastic) pipe support in the system. Optomechanical analysis was made in order to estimate and compensate possible stresses from the thermal contraction of mounting parts at cryogenic temperatures. Finite Element Analysis (FEA) of mechanical structure was also conducted to ensure safety and stability in launching environments and in orbit. MIRIS SOC will mainly perform Galactic plane survey with narrow band filters (Pa $\alpha$ and Pa $\alpha$ continuum) and CIB (Cosmic Infrared Background) observation with wide band filters (I and H) driven by a cryogenic stepping motor.

Synthesis and Properties of Nonlinear Optical Polyquinonediimine Containing Di-Azobenzene Group in the Side Chain (곁사슬에 디아조벤젠기를 갖는 비선형 광학 폴리퀴논디이민의 합성과 특성에 관한 연구)

  • Lee, Sang-Bae;Yang, Jung-Sung;Park, Dong-Kyu
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.496-502
    • /
    • 2001
  • Thermally stable polyquinonediimines(PQDI) containing di-azobenzene in the side chain were synthesized by means of condensation polymerization under $TiCl_4$. The synthesized monomers and polymers were identified by FT-IR, $^1H-NMR$, and elemental analysis. Especially, the polymerization of PQDI was confirmed by the double-bonding peak of >C=N appearing near 1625cm$^{-1}$ in FT-IR spectrum. PQDI with di-azobenzene group in one side chain was insoluble in methanol, acetone and non-polar solvents having big dielectric constant, but had good solubility in polar solvents having small dielectric constant. Molecular weight distribution of PQDI measured by GPC was 1.38. It was confirmed to be amorphous polymer through X-ray diffraction by the appearance of the halo in case of PQDI containing di-azobenzene in the side chain. The glass transition temperature ($_g$) of synthesized polymer was measured to be 116$^{\circ}C$ by differential scanning calorimetry. The SHG value for ${\chi}^{(2)}$ was 1.2 pm/V (${\lambda}$ = 1.542 ${\mu}$m). The SHG value slightly decreased in an early stage but showed temporal stability after 20 hours.

  • PDF

Synthesis and Photoalignment of Soluble Polyimides with Styrylpyridine Side Groups (스티릴피리딘 곁사슬기를 가지는 용해성 폴리이미드의 합성과 광배향)

  • Kim, Jin-Woo;Kim, Min-Woo;Ahn, Deuk-Kyoon;Kim, Woo-Sik
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.207-212
    • /
    • 2009
  • The precursor polyimide of the photoreactive polyimides(PI-SP6 and PI-SP12) was prepared from a derivative of 2, 2, 2-trifluoroethane dianhydride and 3,3'-dihydroxy-4,4'-diaminobiphenyl. PI-SP6 and PI-SP12 were then prepared by the polymer reactions of the precursor polyimide with photoreactive 2-styrylpyridine alkylene (hexylene and dodecylene) derivatives, respectively. The photoreactive polymers were soluble in organic solvents. The polymers showed the initial decomposition temperatures around $350^{\circ}C$. The glass transition temperatures of PI-SP6 and PI-SP12 were found to be $130^{\circ}C$ and $85^{\circ}C$, respectively. This result means that the latter polymer is more flexible than the former polymer. Their transmittance in the film state was 90% at $250^{\circ}C$, which indicates that the photosensitive polyimides with thermal stability have high optical transparency even at the high temperature. The respective dichroic ratios of PI-SP6 and PI-SP12 were found to be 0.01 and 0.03 at an exposure energy of $1.5\;J/cm^2$. This result suggests that the latter polymer with larger flexibility compared to the former polymer is more effective for the photoalignment.

Oxidation of Ethanol in the Gas Phase with Alcohol Oxidase and Alcohol Dehydrogenase (Alcohol Oxidase와 Alcohol Dehydrogenase를 이용한 기상에서의 Ethanol의 산화반응)

  • 박현규;장호남김동옥
    • KSBB Journal
    • /
    • v.9 no.3
    • /
    • pp.239-245
    • /
    • 1994
  • The effects of reaction temperature and the level of hydration(water activity) were studied for gas phase reactions of alcohol oxidase and alcohol dehydrogenase immobilized on DEAE-cellulose and controlled pore glass(CPG). Optimum reaction temperature zone of gas phase reaction was similar to that of aqueous phase reaction. The activity of alcohol oxidase increased dramatically and the stability decreased when the water activity was increased from 0.3 to 0.8. The apparent activation energies of the gas phase reaction decreased approaching the values obtained in the aqueous phase reaction as the water activity increased. In the both cases of alcohol oxidase and alcohol dehydrogenase, the rate constants of the gas phase reaction were lower than those of aqueous phase reaction by two orders of magnitude and these results could be correlated to the vapor-liquid equilibrium data of the substrate, ethanol.

  • PDF

Synthesis of Mesoporous Pt-Au Alloy Electrode by Electrodeposition Method for Direct Methanol Fuel Cell (전기화학적 증착법에 의한 직접 메탄올 연료전지(DMFC)용 메조포러스 백금-금 합금전극제조)

  • Park, Eun-Kyung;Ahn, Jae-Hoon;Kim, Young-Soo;Kim, Kyung-Hwa;Baeck, Sung-Hyeon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.727-731
    • /
    • 2008
  • Mesoporous Pt-Au alloy films were successfully fabricated on ITO-coated glass by electrodeposition method using tri-blockcopolymer (P123) as a templating agent. The electrolyte consisted of 10 mM hydrogen hexachloroplatinate ($H_2PtCl_6$), 10 mM hydrogen tetrachloroaurate ($HAuCl_4$), and proper amount of P123. For comparison, control samples were electrodeposited without $HAuCl_4$ and P123. Film composition was determined by EDS(Energy Dispersive X-ray Spectroscopy), and the mesoporous structure was confirmed by TEM(Transmission Electron Microscopy). SEM(Scanning Electron Microscopy) was utilized to examine surface morphology, and it was observed that the addition of P123 affected the particle growth, resulting in the significant change of surface morphology. Methanol oxidation and CO oxidation were carried out to investigate electrocatalytic activities of synthesized samples. It was observed that the catalytic activity was strongly dependent on the film compositions. Compared with nonporous electrode prepared without P123 templating, mesoporous films prepared with P123 templating showed much higher catalytic activities and stability for both methanol oxidation and CO oxidation. These enhanced electrocatalytic activities were due to the high surface area and facilitated charge transfer of mesoporous films.