• Title/Summary/Keyword: glass fibers

Search Result 356, Processing Time 0.024 seconds

STRENGTH OF GLASS FIBER REINFORCED PMMA RESIN AND SURFACE ROUGHNESS CHANGE AFTER ABRASION TEST

  • Lee, Sang-Il;Kim, Chang-Whe;Lim, Young-Jun;Kim, Myung-Joo;Yun, Suk-Dae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.3
    • /
    • pp.310-320
    • /
    • 2007
  • Statement of the problem. The fracture of acrylic resin dentures remains an unsolved problem. Therefore, many investigations have been performed and various approaches to strengthening acrylic resin, for example, the reinforcement of heat-cured acrylic resin using glass fibers, have been suggested over the years. But problems such as poor workability, rough surface, poor adhesion of glass fiber resin complex are not solved yet. Purpose. The aim of the present study was to investigate the effect of short glass fibers on the transverse strength of heat-polymerized denture base acrylic resin and roughness of resin complex after abrasion test. Material and methods. To avoid fiber bunching and achieve even fiber distribution, glass fiber bundles were mixed with acrylic resin powder in conventional mixer with a non-cutting blade, to produce the glass fiber($10{\mu}m$ diameter, 3mm length, silane treated) resin composite. Glass fibers were incorporated at 0%, 3%, 6% and 9% by weight. Transverse strength were measured. After abrasion test, surface roughness was evaluated and scanning electron microscope view was taken for clinical application. Results. 1. 6% and 9% incorporation of 3mm glass fibers in the acrylic resin enhanced the transverse strength of the test specimens(p<0.05). 2. Before abrasion test, incorporation of 0%, 3%, 9% glass fiber in the resin showed no dirrerence in roughness statisticaly(p>0.05). 3. After abrasion test, incorporation of 0%, 3%, 6% glass fiber in the resin showed same surface roughness value statistically(p>0.05). 4. In SEM, surface roughness increased as the percentage of the fibers increased. 5. In the areas where glass fiber bunchings are formated, a remarkably high roughness was noticed. Conclusion. 6% and 9% addition of silane-treated short glass fibers into denture base acrylic resin increased transverse strength significantly. Before and after abrasion test, incorporation of 0%, 3%, 6% glass fiber in the resin showed same surface roughness value statistically.

Effect of waste glass as powder and aggregate on strength and shrinkage of fiber reinforced foam concrete

  • Mayada A. Kareem;Ameer A. Hilal
    • Advances in materials Research
    • /
    • v.12 no.4
    • /
    • pp.331-349
    • /
    • 2023
  • Foam concrete can be considered as environmental friendly material due to its low weight, its minimal cost and a possibility to add waste materials in its production. This paper investigates the possibility of producing foam concrete with waste glass as powder and aggregate. Then, the effect of using waste glass on strength and drying shrinkage of foam concrete was examined. Also, the effect of incorporating polypropylene fibers (12 mm length and proportion of 0.5% of a mix volume) on distribution of waste glass as coarse particles within 1200 kg/m3 foam concrete mixes was evaluated. Waste glass was used as powder (20% of cement weight), as coarse particles (25%, 50% and 100% instead of sand volume) and as fine particles (25% instead of sand volume). From the results, the problem of non-uniform distribution of coarse glass particles was successfully solved by adding polypropylene fibers. It was found that using of waste glass as coarse aggregate led to reduce the strength of foam concrete mixes. However, using it with polypropylene fibers in combination helped in increasing the strength by about 29- 50% for compressive and 55- 71% for splitting tensile and reducing the drying shrinkage by about (31- 40%). In general, not only the fibers role but also the uniformly distributed coarse glass particles helped in improving and enhancing the strength and shrinkage of the investigated foam concrete mixes.

Effect of Milled Glass Fibers on Corrosion Resistance of PSC Grout Mortar (초단유리섬유가 PSC 그라우트의 부식저항성능에 미치는 영향)

  • Moon, Do-Young;Kim, Sang-Woon;Kim, Dong-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.37-45
    • /
    • 2015
  • In this experimental study, effect of milled glass fibers was investigated on corrosion resistance of PSC grout mortar. In order to check whether the mortar mixture with milled glass fibers satisfy the required properties as a PSC grout, time of flow, bleeding and compressive strength measured. The corrosion resistance were investigated through chloride ion migration test, mortar absorption test and surface resistivity measurement. It is confirmed that all proportions with milled glass fibers have better corrosion resistance than that with only OPC binder. Time of flow was reduced but the bleeding was increased to unacceptable level by using milled glass fibers. Consequently, the mix proportion with milled glass fibers for a PSC grout should be modified to have lower water/binder ratio.

Fabrication and Properties of D-Glass Fiber with Low Dielectric Constant (저유전율을 가지는 D-Glass Fiber의 제조 및 특성)

  • Jeong, Bora;Lee, Ji-Sun;Lee, MiJai;Lim, Tae-Young;Lee, Youngjin;Jeon, Dae-Woo;Shin, Dongwook;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.254-259
    • /
    • 2018
  • General D-glass(Dielectric glass) fibers are adaptable to PCBs(Printed circuit boards) because they have a low dielectric constant of about 3.5~4.5. However, very few papers have appeared on the physical characteristics of D-glass fibers. D-glass fibers were fabricated via continuous spinning process using bulk D-glass. In order to fabricate the D-glass, raw materials were put into a Pt crucible, melted at $1650^{\circ}C$ for 2 hrs, and then annealed at $521{\pm}10^{\circ}C$ for 2 hrs. We obtained transparent clear glass. The transmittance and adaptable temperature for spinning of the bulk marble glass were characterized using a UV-visible spectrometer and a viscometer. Continuous spinning was carried out using direct melting spinning equipment as a function of the fiberizing temperature in the range of $1368^{\circ}C$ to $1460^{\circ}C$, while the winder speed was between 100 rpm and 200 rpm. We investigated the physical properties of the D-glass fibers. The average diameters of the glass fibers were measured by optical microscope and FE-SEM. The average diameters of the D-glass fibers were 21.36 um at 100 rpm and 34.06 um at 200 rpm. The mechanical properties of the fibers were confirmed using a UTM(Universal materials testing machine). The average tensile strengths of the D-glass fibers were 467.03 MPa at 100 rpm and 522.60 MPa at 200 rpm.

Study on the Polymer Gel Fiber of Alkali Resistance Zirconia System for GRC (GRC 제조용 내알칼리성 지르코니아계 고분자 겔섬유에 관한 연구)

  • 신대용;한상목;김경남;강위수
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.8
    • /
    • pp.934-940
    • /
    • 1994
  • Fibers of ZrO2-SiO2 system were prepared from the hydrolysis and condensation of Si(OC2H5)4 and Zr(OnC3H7)4 with different H2O/alkoxide molar ratios. It was found that fibers could be drawn in the viscosity range of 1~100 poise from HCl catalyzed solutions with lower water contents of the mole ratio H2O/alkoxide, r 2. The fibrous gels were converted into the corresponding oxide glass fibers by heating at 80$0^{\circ}C$. Mechanical test was performed on E, A and 20ZrO2-80SiO2 glass fibers reinforced cement in order to investigate the flexural strength. The flexural strength value of 20ZrO2-80SiO2 glass fibers reinforced cement was greater than those of E and A. The chemical durability of the fibers in alkaline solutions increased with ZrO2 content. The weight loss due to the corrosion by 2N-NaOH solutions at $25^{\circ}C$ for 160 hours was about 0.31$\times$10-2 mg/dm2 for the 20ZrO2-80SiO2 glass fibers, which was superior to that of Vycor glass.

  • PDF

Estimation of Total Dust Concentration Complying with the TLV of Airborne Man-made Mineral Fibers by Regression Analysis (회귀분석에 의한 공기중 인조광물 섬유 허용기준과 부합하는 총분진 농도의 추정)

  • Shin, Yong Chul;Yi, Gwang Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.2
    • /
    • pp.158-166
    • /
    • 1999
  • The purpose of this study was to investigate the correlation between airborne total dust and man-made mineral fibers (MMMF), and to estimate total dust concentration to maintain below the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV$^{(R)}$) for the MMMF. The regression coefficients between airborne total dust concentrations and fiber concentrations determined in the industries producing glass fibers, rock wool. refractory ceramic and continuous filament glass fibers products were 0.41, 0.42, 0.20 and 0.19, respectively. The size characteristics of fibers as well as the amounts of contaminated non-fibrous dusts could affect the correlation intensities. When total dust and fiber exposure data were compared with the occupational exposure limits, there was a large gap between two evaluation results. The regression coefficient between total dust and fiber data was increased ($r^2=0.88$) in the process of insulation installation generating in the higher levels of glass or rock wool fibers. In this case, an estimated total dust concentration of glass wool or rock wool fibers complying with the ACGIH TLV (1 f/cc) was $1.7mg/m^3$. In conclusion, the total dust and fibers concentrations was highly correlated at the higher exposure levels so that total dust-monitoring data could be used to control simply and economically and to estimate worker's exposure to fibers.

  • PDF

Microstructure and Processing of Bioactive Ceramic Composites as Dental Implants (치과 임플란트용 bioactive 세라믹 복합재료의 제조와 미세조직)

  • Kim, Bu-Sob
    • Journal of Technologic Dentistry
    • /
    • v.25 no.1
    • /
    • pp.21-28
    • /
    • 2003
  • The purpose of this study was to process bio-active glass ceramic composite, reinforced with sapphire fibers, by hot press. Also to study the interface of the matrix and the sapphire fiber, and the mechanical properties. Glass raw materials melted in Pt crucible at 1300$^{\circ}C$ during 3.5 hours. The melt was crushed in ball mill and then crushed material, ground and sieved to $<40{\beta}{\mu}m$. Sapphire fibers cut (30mm) and aligned. Powder and fibers hot pressed. The micrographs show good bonding between the matrix and the fiber and no porosity in the glass matrix. This means ideal fracture phenomena. Glass is fractured before the fiber. This is indication of good fracture strength. EDXS showing aluminum rich phase and crystalline phase. Bright field image of the matrix showing crystalline phase. Also diffraction pattern of TEM showing the crystalline phase and more than one phase. Strength of the samples was determined by 3 point bend testing. Strength of the 10vol% sample was approximately 69MPa, while strength of the control sample is 35MPa. Conclusions through this study as follow: 1. Micrographs show no porosity in the glass matrix and the interface. 2. The interface between the fiber and the glass matrix show no gaps. 3. Fracture of the glass indicates characteristic fiber-matrix separation. 4. Presence of crystalline phase at high processing temperature. 5. Sapphire is compatible with bioactive glass.

  • PDF

Hybrid Effects of Carbon-Glass FRP Sheets in Combination with or without Concrete Beams

  • Kang, Thomas H.K.;Kim, Woosuk;Ha, Sang-Su;Choi, Dong-Uk
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.1
    • /
    • pp.27-41
    • /
    • 2014
  • The use of carbon fibers (CF) and glass fibers (GF) were combined to strengthen concrete flexural members. In this study, data of tensile tests of 94 hybrid carbon-glass FRP sheets and 47 carbon and GF rovings or sheets were thoroughly investigated in terms of tensile behavior. Based on comparisons between the rule of mixtures and test data, positive hybrid effects were identified for various (GF/CF) ratios. Unlike the rule of mixtures, the hybrid sheets with relatively low (GF/CF) ratios also produced pseudo-ductility. From the calibrated results obtained from experiments, a new analytical model for the stress-strain relationship of hybrid FRP sheets was proposed. Finally, the hybrid effects were verified by structural tests of concrete members strengthened with hybrid FRP sheets and either carbon or glass FRP sheets.

Effect of fiber reinforcement on impact strength of heat polymerized polymethyl methacrylate denture base resin: in vitro study and SEM analysis

  • Mowade, Tushar Krishnarao;Dange, Shankar Pandurang;Thakre, Mrunali Balkrushna;Kamble, Vaibhav Deorao
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.1
    • /
    • pp.30-36
    • /
    • 2012
  • PURPOSE. The aim of this in-vitro investigation was to describe the effect of reinforcement with different fibers on impact strength of heat polymerized poly-methyl methacrylate (PMMA) denture base resin and to analyze the effect of surface treatment of the fibers on the impact strength. MATERIALS AND METHODS. The specimens were fabricated from the dies formed as per standard ASTM D4812. 2% by weight of glass, polyethylene and polypropylene fibers were incorporated in the PMMA resin. The Izod impact testing was performed on the unnotched specimens and the values obtained were analyzed using appropriate one way ANOVA, followed by unpaired t-test. Fractured ends of the samples were subjected to the SEM analysis. RESULTS. The polypropylene fibers with plasma treatment showed the highest impact strength ($9.229{\times}10^2$ J/m) followed by the plasma treated polyethylene fibers ($9.096{\times}10^2$ J/m), untreated polypropylene fibers ($8.697{\times}10^2$ J/m), untreated polyethylene fibers ($7.580{\times}10^2$ J/m), silane treated glass fibers ($6.448{\times}10^2$ J/m) and untreated glass fibers ($5.764{\times}10^2$ J/m). Also the surface treatment of all the fibers has shown the significant improvement in impact strength. Findings of the SEM analysis justified the improvement in impact strength after surface treatment. CONCLUSION. Reinforcement with the fiber is an effective method to increase the impact strength of PMMA denture base resin. The surface treatment of fibers further increases the impact strength significantly.

Nonlinear Optical Fibers for Electro-optic Applications

  • Han, Won-Taek;Kim, Bok-Hyeon
    • Ceramist
    • /
    • v.10 no.3
    • /
    • pp.15-27
    • /
    • 2007
  • Fabrication and electro-optic applications of glass optical fibers were reviewed. Theoretical description on the electro-optic Kerr effect in glass optical fibers, particularly for the second-order optical nonlinearity was given. Fabrication procedure and the characterization of the nonlinear electro-optic fibers with internal electrodes were described. Several electro-optic devices based on the polarimetric cells made by the nonlinear optical fibers with internal electrodes were also discussed with the experimental results on the electro-optic effect.

  • PDF