• Title/Summary/Keyword: glass fiber reinforced composite

Search Result 474, Processing Time 0.023 seconds

Evaluation of Interfacial and Mechanical Properties of GF/p-DCPD Composites with Different Sizing Agents (사이징제에 따른 유리섬유/폴리디사이클로펜타디엔 복합재료의 계면물성 및 기계적 물성 평가)

  • Kim, Jong-Hyun;Kwon, Dong-Jun;Shin, Pyeong-Su;Park, Ha-Seung;Baek, Yeong-Min;Park, Joung-Man
    • Composites Research
    • /
    • v.31 no.2
    • /
    • pp.57-62
    • /
    • 2018
  • Interfacial and mechanical properties of neat and two sizing agents coated glass fiber (GF)/polydicyclopentadiene (p-DCPD) composites were evaluated at room and low temperatures, $25^{\circ}C$ and $-20^{\circ}C$. Sizing agents of GFs were extracted using acetone and compared via FT-IR. Surface energy and work of adhesion between GFs and p-DCPD were calculated by dynamic contact angle measurement. Mechanical properties of different GFs were determined using single fiber tensile test and interfacial properties of single GF reinforced DCPD strip were determined using cyclic loading tensile test. Mechanical properties of GFs/p-DCPD composites at room and low temperatures were determined using tensile, compressive, and Izod impact tests. Interfacial and mechanical properties were different with sizing agents of GFs and the optimized condition of sizing agent was found.

Evaluation of static fracture resistances and patterns of pulpless tooth restored with poly-ether-ketone-ketone (PEKK) post (Poly-ether-ketone-ketone (PEKK) 포스트로 수복한 근관 치료 치아의 정적 파절 저항성 및 파절 형태에 관한 평가)

  • Park, Ha Eun;Lee, Cheol Won;Lee, Won Sup;Yang, Sung Eun;Lee, Su Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.2
    • /
    • pp.127-133
    • /
    • 2019
  • Purpose: The purpose of present study was to investigate fracture strength and mode of failure of endodontically treated teeth restored with metal cast post-core system, prefabricated fiber post system, and newly introduced polyetherketoneketone (PEKK) post-core system. Materials and methods: A total of 21 mandibular premolar were randomly grouped into 3 groups of 7 each according to the post material. Group A was for metal cast post core; Group B for prefabricated glass fiber post and resin core; and Group C for milled PEKK post cores. All specimens were restored with metal crown. The fracture strength of each specimen was measured by applying a static load of 135-degree to the tooth at 2 mm/min crosshead speed using a universal testing machine. After the fracture strength measurement, the mode of failure was observed. The results were analyzed using Kruscal-Wallis test and post hoc Mann-Whitney U test at confidence interval ${\alpha}=.05$. Results: Fracture resistance of PEKK post core was lower than those of cast metal post and fiber reinforced post with composite resin core. In the aspect of fracture mode most of the root fracture occurred in the metal post core, whereas the post detachment occurred mainly in the fiber reinforced post. In the case of PEKK post core, teeth and post were fractured together. Conclusion: It is necessary to select appropriate materials of post for extensively damaged teeth restoration and clinical application of the PEKK post seems to require more research on improvement of strength.

Behavior of Hybrid Stud under Compressive Load (복합스터드의 압축 좌굴 거동)

  • Lee, Sang Sup;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.609-619
    • /
    • 2004
  • An investigation was conducted on the activities around Europe in order to solve the problem of the thermal bridging of steel studs, which had caused a significant disadvantage. This study included the following: diminishing the contact area between the studs and the sheathing, lengthening the heat transfer route, replacing the steel web with a less conductive material, and placing foam insulation in locations where the thermal shorts are most critical. Although energy efficiency is usually the focus of such foreign cases because their stud application is mostly limited to low-rise residential buildings, both structural and thermal performance are taken into consideration in this study because these target middle-story buildings. A hybrid stud composed of steel and polymer was also developed. This hybrid stud, which is 150 SL in size, is made of a galvanized steel sheet (SGC58) and a glass fiber reinforced polymer (GFRP) withepoxy bonding. A total of 32 specimens were manufactured. Its parameters comprise two types of connection detail,s: the thickness of steel (1.0mm and 1.2mm) and of the GFRP (4mm-4ply and 6mm-6ply), and the ratio of the length to the depth (L/D = 3, 6, 9, 12). Steel stud specimens with the same conditions were compared to the hybrid stud. The test revealed that in the case of the steel specimen with a thickness of 1.0mm, the maximum load of hybrid studs increased an average of 1.62 times comparedto that of the steel stud. In the case of the steel specimen with a thickness of 1.2mm, on the other hand, the average increase was 1.46times. All specimens showed full composite action until the collapse.

Durability of Carbon/Epoxy Composites for Train Carbody under Salt Water Environment (염수환경에 노출된 철도차량용 탄소섬유/에폭시 복합재의 내구성 평가)

  • Yoon, Sung-Ho;Hwang, Young-Eun;Kim, Jung-Seok;Yoon, Hyuk-Jin;Kessler, Michael R.
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.4
    • /
    • pp.357-363
    • /
    • 2008
  • This study investigates the durability of carbon/epoxy composites for use on train car bodies under a salt water spray environment. Salt water solution with 5% NaCl, similar to natural salt water, was used for the salt water environmental tests. The specimens were obtained from a composite panel consisting of an epoxy matrix reinforced with T700 carbon fabric. The specimens were exposed to the salt water environment for up to 12 months. Mechanical tests were performed to obtain tensile properties, flexural properties, and shear properties. Dynamic mechanical analysis was used to measure such thermal properties as storage modulus, loss modulus, and tan $\delta$. Also FT/IR tests were conducted to investigate changes in chemical structure with exposure. The results revealed that fiber-dominated mechanical properties were not affected much by exposure time, but matrix-dominated mechanical properties decreased with increasing exposure time. Storage modulus was not very sensitive to exposure time, but glass transition temperature was affected, slightly decreasing with increasing exposure time. Although the peak intensity of FT/IR curves was affected slightly by exposure time, the peak shape and peak location of FT/IR curves were not noticeably changed. Carbon/epoxy composites used for this study were relatively stable to the salt water environment.