• Title/Summary/Keyword: glacial

Search Result 297, Processing Time 0.029 seconds

Late Quaternary Stratigraphy and its Depositional History in the Inner Shelf off the Southern Coast, Korea (한국 남해 내 대륙붕 후 제4기 층서 및 퇴적역사)

  • Yoo, Dong-Geun;Lee, Ho-Young;Park, Keun-Pil;Koo, Nam-Hyung;Kim, Jong-Chon
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.4
    • /
    • pp.243-250
    • /
    • 2005
  • Analysis of high-resolution seismic profiles acquired from the inner shelf off the southern coast of Korea reveals that the inner shelf sequence can be divided into three stratigraphic units formed after the Last Glacial Maximum (LGM). Unit I is characterized by complex seismic facies including semi-transparent, stratified, and hummocky reflections on seismic records. It consists of sandy mud or muddy sand, deposited under estuarine environment during the post-glacial transgression. Unit II acoustically shows semi-transparent or hummocky reflections and consists of sand with gravels and shell debris, produced by shoreface erosion during the transgression. Unit III is characterized by transparent or semi-transparent seismic facies and consists of mud originated from the Nakdong and Seomjin rivers during recent highstand of sea level. Unit III is confined to the inner shelf with an extenal form of stratal wedge.

Soil development and bacterial community shifts along the chronosequence of the Midtre Lovénbreen glacier foreland in Svalbard

  • Kwon, Hye Young;Jung, Ji Young;Kim, Ok-Sun;Laffly, Dominique;Lim, Hyoun Soo;Lee, Yoo Kyung
    • Journal of Ecology and Environment
    • /
    • v.38 no.4
    • /
    • pp.461-476
    • /
    • 2015
  • Global warming has accelerated glacial retreat in the high Arctic. The exposed glacier foreland is an ideal place to study chronosequential changes in ecosystems. Although vegetation succession in the glacier forelands has been studied intensively, little is known about the microbial community structure in these environments. Therefore, this study focused on how glacial retreat influences the bacterial community structure and its relationship with soil properties. This study was conducted in the foreland of the Midtre Lovénbreen glacier in Svalbard (78.9°N). Seven soil samples of different ages were collected and analyzed for moisture content, pH, soil organic carbon and total nitrogen contents, and soil organic matter fractionation. In addition, the structure of the bacterial community was determined via pyrosequencing analysis of 16S rRNA genes. The physical and chemical properties of soil varied significantly along the distance from the glacier; with increasing distance, more amounts of clay and soil organic carbon contents were observed. In addition, Cyanobacteria, Firmicutes, and Actinobacteria were dominant in soil samples taken close to the glacier, whereas Acidobacteria were abundant further away from the glacier. Diversity indices indicated that the bacterial community changed from homogeneous to heterogeneous structure along the glacier chronosequence/distance from the glacier. Although the bacterial community structure differed on basis of the presence or absence of plants, the soil properties varied depending on soil age. These findings suggest that bacterial succession occurs over time in glacier forelands but on a timescale that is different from that of soil development.

The Distribution and Geomorphic Development of Alluvial Fans along the Bulguksa Fault System in Gyeongju and Ulsan City, Southeastern Korea (한국 남동부 경주 및 울산시 불국사단층선 지역의 선상지 분포와 지형발달)

  • 황상일;윤순옥
    • Journal of the Korean Geographical Society
    • /
    • v.36 no.3
    • /
    • pp.217-232
    • /
    • 2001
  • One of the molt debatable Issues on geomorphological study in Korea should be the discussion over the formation process of gent1e slope surfaces on the piedmont area. In this study, the characteristics of spatial distribution and the formation process of geomorphic surfaces were investigated by classifying the alluvial fans as three geomorphic surfaces alluvial the Bulguksa fault-line The fan surfaces, distributed along the west slue of Bulguksa Mts, consists the confluent alluvial fans continuously along the N-S direction The surfaces of Sincheon-Hyomun district juxtaposed to the Ulsan Bay must be infulenced by sea-level chance during the Quaternary Taken together, these observation suggests that the major four factors contributed to the fan formation 1) rather longer freeze-and-thaw cycle during the Glacial period. 2) the steep mountain slope along the west side of Bulguksa Mts.. which had been resulted from the horizont stress of EAst Sea 3)the tectolinear fault system developed by structural movement along the Bulguksa Fault-line valley. and 4) the erosion-labile characteristics of bedrock In this urea which is consisted of the Bulguksa granite and the sedimentary rock formed in Cretaceous period.

  • PDF

The Mineralogy and Geochemistry of the Uppermost Sediments of the Lake Hovsgol, North Mongolia : It's Implication to the Paleoenvironmental Changes

  • Tumurhuu, D.;Narantsetseg, Ts.;Ouynchimeg, Ts.
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.3-3
    • /
    • 2004
  • One short core with length of 146cm(HB-107, at coordinates of $N51^{\circ}$11'37.5";$E100^{\circ}$24'45.6", from 229m water depth was subject of the present study. The sub-samples of the core were analyzed for the water contents (WC%), biogenic silica, identification of the main phases, grain size distribution, geochemistry and some physical properties of sediment(Wet density and Magnetic susceptibility) with aims of recording palaeo-environmental changes in Northem Mongolia. The evaluation of the geochemical and mineralogical proxies on palaeo-climated and palaeo-environmental changes are based on comparison to the behvior of biogenic silica through core, as later one had been showed itself, as good indicator of the climate and environmental fluctuation. Age model of the investigating core based on previously C 14 dated core HB105 taken from the central part of the Hobsgol Lake and the result had been published elsewhere. The core consists of two litological varieties : upper diatomaceous silt, lower clay. According to the age model the upper diatomaceous silt formed during the Holocene, lower caly-during the late Pleistocene glacial period. The geochemistry and phase identification analysis on the core samples are resulted in determining main minerals that form the bottom sediments and their geochemistry. The main include quartz, felspar, muscovite, clinochlore, amphibole and carbonate phase(dolomite and calcite). Through the core not only occur the relative quantitative changes of the main phases, but also happen that the carbonate phase completely disappear in diatomaceous silt. This is believed to be related to the lake water salinity changes, which occurred during the trassition period from Pleistocene glacial-to the Holocene interglacial. These abrupt changes of the mineralogy have been clearly traced in geochemistry of sediments, specially in calcium concentration, which is high in lower clay and low in upper diatomaceous silt. That means, geochemistry and mineralogy of the bottom sediments can be used as proxy data on palaeo-climate and palaeo-environmental changes.

  • PDF

Climatic Changes During the Past 400,000 Years

  • Yi, HI-Il;Shin, Im-Chul
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.23-31
    • /
    • 2004
  • Temperature variations, and carbon dioxide and methane concentrations are summarized during the past 400,000 years. Atmospheric temperature varied approximately within $10^{\circ}C$ during the past 400,000 years. Most of the time during the past 400,000 years, temperature was lower than today except 410000, 320000, 250000, and 125000 years ago. Temperature was slightly higher or at least similar to today during the time period of 410000. 320000, 250000, and 125000 years ago. The carbon dioxide concentration varied between 180 and 300 ppm, and the methane concentration varied between 40 and 700ppb. The present atmospheric concentration of carbon dioxide is 375 ppm and methane is 1750 ppb. Temperature was 5-$7^{\circ}C$ lower than today during the Last Glacial Maximum(18,000 years ago) and the Younger Dryas(10,000 years ago). Temprature was varied within $1^{\circ}C$ during the past 10,000 years. Especially Middle Holocene Climatic Optimum(6,000 years ago), Medieval Warm Period (500-1,000 years ago), and Little Ice Age(100-500 year ago) were global climatic events. In general, mechanism for the Middle Holocene Climatic Optimum, Medical Warm Period, and Little Ice Age can be explained by the solar insulation, however their exact mechnism is not well known. Carbon dioxide concentration during the past 400,000 years never reached the current value of 375 ppm. Furthermore, the current methane concentration never reached during the past 20Ma. However, current temperature value has happened several times during the past 400,000 years. The implication of this is unsolved question so far. This should be challenged in the near future.

  • PDF

Ecology and Natural History of North Korean Pinaceae (북한 소나무과 나무의 생태와 자연사)

  • Kong, Woo-Seok
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.5
    • /
    • pp.323-337
    • /
    • 2006
  • This work discussed the species composition, phylogeny, spatio-temporal distribution, ecology and natural history of North Korean Pinaceae or pine tree family, which seems to be important to maintain nature and ecosystem in the Korean Peninsula. Out of five genera and sixteen species of Pinaceae of the Korean Peninsula, North Korea contains four genera and eleven species of Pinaceae, including Pinus densilflora, P. koraiensis, P. pumila, Picea jezoensis, P. koraiensis, P. koraiensis var. koraiensis, P. pungsanensis, Larix gmelini, L. gmelinii var. olgensis, Abies holophylla and A. nephrolepis. In terms of phylogeny Pinus is closely related to Picea, and followed by Larix. Abies is close to Tsuga which only occur at Ullung Island. Distributional pattern of North Korean Pinaceae can be classified into four types; three species of nation-wide montane type i.e., Pinus densilflora, P. koraiensis and Abies holophylla, four species of central and northern subalpine type, i.e., Pinus pumila, Picea koraiensis, Larix gmelini and Abies nephrolepis, one nation-wide subalpine type, Picea jezoensis, and three species disjunctive to north type, i.e., Picea koraiensis var. koraiensis, P. pungsanensis, and Larix gmelinii var. olgensis. Pinaceae species occurring on the alpine and subalpine belts of North Korea, such as Pinus koraiensis, P. pumila, Picea jezoensis, P. koraiensis, P. koraiensis var. koraiensis, P. pungsanensis, Larix gmelini, L. gmelinii var. olgensis and A. nephrolepis are considered as the glacial descendant from the boreal region. Those species might have migrated from the north during the Pleistocene glacial epochs in search of favourable condition, and since the Holocene period they survived on the hostile alpine and subalpine environments, in which they are more competitive than warmth-tolerant temperate vegetation. Certain species, such as Picea pungsanensis, is segregated on the isolated mountains since the Pleistocene period, and forced to adapt to local environment, and eventually became an endemic species of North Korea. Recent rapid global warming trend especially in northern high mountains of North Korea could cause an unfavourable environment for the survival of cold-tolerant Pinaceae of the alpine and subalpine belts. Pinus densiflora, which is occurring on the montane belt might faced with difficulties due to both the deforestation and the outbreak of insect-borne disease, such as Bursaphelenchus xylophilus.

Spatial Distributional Characteristics of Wind-Hole and Governance Strategy (풍혈의 공간적 분포 특징과 관리 방안)

  • Kong, Woo-Seok;Yoon, Kwanghee;Kim, Intae;Lee, Youmi;Oh, Seunghwan
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.431-443
    • /
    • 2012
  • Wind holes or air holes, from which cool air blows out during the summer, but mild air comes out during the winter, have provided the phytogeographically important refugia for cryophilous or cold-loving boreal flora during the Holocene period. At present, wind holes are serving as a faraway disjunctive habitat for Pleistocene relict glacial floristic elements, and present an invaluable information to reconstruct the natural history. Present work aims to collate the nationwide distribution and relevant DB on the potential wind holes of Korea based upon media and literature sources, along with geographical informations, such as place name, topographic map, environmental geographical information, flora, monitoring data of Korea National Arboretum, and field survey data. Geographical information on sixty nine wind hole sites have compiled and analyzed on the basis of flora and presence of fossilized periglacial landforms, such as talus, block field, and block stream, and sixteen sites have thereafter carefully selected and scrutinized through field surveys. To maintain a sustainability of wind hole ecosystem, including their original landform, micro-meteorological phenomena and plant community therein as a refugia or habitat for relict plant species of Pleistocene glacial period, appropriate restrictions and preservation measures are required.

Sea Level Fluctuation in the Yellow Sea Basin (황해 분지의 해수면 변동)

  • PARK, YONG AHN;KHIM, BOO KEUN;ZHAO, SONGLING
    • 한국해양학회지
    • /
    • v.29 no.1
    • /
    • pp.42-49
    • /
    • 1994
  • A series of radiocarbon dating from intertidal, subtidal, and inner continental shelf deposits investigated along the west coast of Korea as well as from its offshore sea floor (namely, the eastern Yellow Sea Basin) how (1) the Holocene sea level rise, i.e., the ecstatic sea-level history during the oxygen isotope stage 1, and (2) pre-Holocene sea-level fluctuations during the oxygen isotope stages 2 and 3. Marine geophysical investigations in the Yellow Sea reported a possible development of desert and loses deposits due to dieselization under the cold and dry climate during the Last Glacial Maximum. The Kanweoldo deposit overlain unconformably by the Holocene intertidal deposits, which is mainly exposed along the tidal channels and intertidal flats in the Cheonsu Bay, the west coast of Korea, shows the characteristic cryogenic structure (cryoturbation). Such cryoturbation structure of the Kanweoldo deposit appears to indicate the cold and dry climate under the ecstatic sea-level paleoshoreline standing before and after of the pre-Holocene interstitial period (about 30000 y BP is suggested and its shoreline curve is constructed.

  • PDF

Mineralogical Characteristics and Origins of Smectite in the Marine Sediment around South Shetland Islands, Antarctica (남극 사우스셰틀란드 해양퇴적물내 스멕타이트의 광물학적 특성과 기원)

  • 정기영;윤호일
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.22-32
    • /
    • 2002
  • Mineral composition and chemistry of the clay minerals in the three cores from the continental shelves of South Shetland Islands (NCS09) and Anberse Island (GC98-2), and from the fjord of King George Island (A10-01) were determined by X-ray diffraction and electron microprobe analysis in search of the distributions and origin of the clay minerals in the Antarctic marine sediments. Smectite content is relatively high in NCS09 regardless of core depths (av. 8.3%), but low in GC98-2 (1.1%). In Al0-01, smectite content is higher in the upper section than in the lower section. Kaolinite was not detected from all the cores in this study Yellow to yellowish green clay granules were commonly scattered in the sediments of NCS09 cores. The clays contain 16.97% and 2.53% $Fe_2$$O_3$$K_2$O. Average structural formula of the clay indicates ferrian beidellite . The (Fe, K)-rich smectite of NSC09 must have been derived from relatively young basaltic volcanics altered by reaction with seawater near Shetland Islands by glacial erosion or eolian process related to volcanic eruption. GC98-2 nearer to Antarctic continent is very low in smectite content. In A10-01, the lower diamicton was deposited from the glacial erosion of smectite-free ancient volcanics in the interior of King George Island, while the upper section was derived from the smectite-bearing terrestrial debris and eolian materials after retreat of glaciers in Marian Cove and ice cover in Barton Peninsula. Thehigh K contents of smectites suggest the interstratification of illite and smectite layers, which might be observed by future TEM lattice fringe imaging.

Biogeographic pattern of four endemic Pyropia from the east coast of Korea, including a new species, Pyropia retorta (Bangiaceae, Rhodophyta)

  • Kim, Sun-Mi;Choi, Han-Gu;Hwang, Mi-Sook;Kim, Hyung-Seop
    • ALGAE
    • /
    • v.33 no.1
    • /
    • pp.55-68
    • /
    • 2018
  • Foliose species of the Bangiaceae (Porphyra s. l.) are very important in Korean fisheries, and their taxonomy and ecophysiology have received much attention because of the potential for developing or improving aquaculture techniques. Although 20 species of foliose Bangiales have been listed from the Korean coast, some of them remain uncertain and need further comparative morphological studies with molecular comparison. In this study, we confirm the distribution of four Pyropia species from the east coast of Korea, Pyropia kinositae, P. moriensis, P. onoi, and P. retorta sp. nov., based on morphology and rbcL sequence data. Although P. onoi was listed in North Korea in old floral works, its occurrence on the east coast of South Korea is first revealed in this study based on molecular data. P. kinositae and P. moriensis, which were originally described from Hokkaido, Japan, are first reported on the east coast of Korea in this study. Pyropia retorta sp. nov. and P. yezonesis share a similar thallus color and narrow spermatangial patches in the upper portion of the frond, and they have a sympatric distribution. However, P. retorta can be distinguished by the curled or twisted thalli and by molecular data. The biogeographic pattern of the two native species, P. kinositae and P. retorta, suggests that the east coast of Korea may have been a place of refugia during the Last Glacial Maximum (LGM), and then recolonized to the northern part of Japan through the restored East Korean Warm Current after the LGM.