• Title/Summary/Keyword: girders

Search Result 760, Processing Time 0.026 seconds

Buckling Design of Temporary Bridges Subjected to Both Bending and Compression (압축과 휨을 동시에 받는 가교량 주요부재의 좌굴설계)

  • So Byoung-Hoon;Kyung Yong-Soo;Bang Jin-Hwan;Kim Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.977-984
    • /
    • 2006
  • Generally main girders and steel piers of temporary bridges form the steel rahmen structure. In this study, the rational stability design procedure for main members of temporary bridges is presented using 3D system buckling analysis and second-order elastic analysis. 2 types of temporary bridges, which are possible to be designed and fabricated in reality, are chosen and the buckling design for them is performed considering load combinations of dead and live loads, thermal load, and wind load. Effective buckling length of steel piers, effects of live loads on effective length of main members, transition of ~id buckling modes, and effects of second-order analysis are investigated through case study of 2 temporary bridges.

  • PDF

Neural Networks-Based Damage Detection for Bridges Considering Errors in Baseline Finite Element Models (모델링 오차를 고려한 신경망 기법 기반 손상추정방법)

  • Lee, Jong-Jae;Yun, Chung-Bang;Lee, Jong-Won;Jung, Hie-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.382-387
    • /
    • 2003
  • In this paper, a neural networks-based damage detection method using the modal properties is presented, which can effectively reduce the effect of the modeling errors in the baseline finite element model from which the training patterns for the networks are to be generated. The differences or the ratios of the mode shape components between before and after damage are used as the input to the neural networks in this method, since they are found to be less sensitive to the modeling errors than the mode shapes themselves. Results of laboratory test on a simply supported bridge model and field test on a bridge with multiple girders confirm the applicability of the present method.

  • PDF

Displace Measurement of the Top of Bridge Pier Using Long gauge Fiber Optic Sensor (긴 게이지길이 광섬유 FBG센서를 이용한 교각상부 거동 혹정)

  • Ki Ki-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.71-76
    • /
    • 2006
  • In this paper, a long gauge Fiber Bragg Grating (FBG) sensor system is described and long gauge FBGs are well, suited for measuring the upper parts of the bridge piers under the extremely severe movement conditions. In the experiments, we used more than 30m long FBG sensors to measure the movement of top part of the bridge piers which are separated from the main bridge by cutting the decks. With the actuator, the deck and girders were pushed and released. We checked the movement of the top of the pier while releasing the pressure of the actuator with the long gauge fiber sensor. In order to measure the movement of the upper part of the pier, the reference point must be outside of the pier. Using the optical fiber sensors, one end of the sensor is attached to the top of the pier and the other end is attached to the bottom of the next pier. The fiber sensors showed good response to the release loading and we could calculate the movement of the top part of the pear.

  • PDF

Evaluation of Economy Feasibility for Bridge Superstructures Using LCC Optimal Design (LCC 최적설계를 황용한 교량 상부구조의 경제성 평가)

  • Ahn Ye-Jun;Lee Kwang-Kyun;Park Jang-Ho;Shin Young-Seok
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.549-556
    • /
    • 2006
  • Life cycle cost is one of important factors in the evaluation of economy feasibility. Load carrying capacity curves for girders and decks are derived on the basis of bridge diagnostic results and condition grade curves to determine the service life and life cycle profile. The total life cycle costs including initial cost, damage cost, maintenance cost, user cost, and etc for the service life are calculated for steel box girder, PSC-I girder and rationalized plate girder. The optimal designs are performed for various service lifes and different superstructure types. The effects of parameters on the life cycle cost are investigated and the economy feasibility is evaluated through the sensitivity analysis.

  • PDF

The Cross Section Optimization of P.C Box-Girder Bridge Constructed by Free Cantilever Method (FCM 으로 가설되는 P.C 박스거더교의 횡단면 최적설계)

  • 방명석;김일곤;조현준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.04a
    • /
    • pp.56-60
    • /
    • 1991
  • Free Cantilever Method(FCM) is one of the most effective construction methods when precast prestressed concrete box girders are erected in the construction site. The special feature of FCM is that precast segments are erected in cantilever on the pier and connected in the middle of span to form the complete superstructure. Therefore each structural subsystem will be shown in each construction step and it should be analyzed for design whenever the segment is erected. In this study, the computer program was developed to optimally design the P.C box girder bridge considering tile construction sequence and verified by comparing the calculated results with the data of existing P.C box girder bridges. the sensitivity analysis was performed to show the efficiency of the developed program.

  • PDF

A study for CWR on Steel Plate Girder Railway Bridge without Ballast (무도상 교량 특성을 고려한 장대화 방안에 관한 연구)

  • Min Kyung-Joo;Nam Bo-Hyun;Ban Geol yeong
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.706-711
    • /
    • 2005
  • From the using CWR (Continuously Welded Rail) on steel plate girder bridges without ballast, axial forces are occurred from a temperature on CWR and girders. Because of the additional axial forces, studies in order to CWR and developments of devices are proceeding. The track system of steel plate girder bridges is poor. When CWR is used for the system, the resistance on sleepers is increased from a temperature. So it is increasing an effect on CWR and, for solving the effect, longitudinal forces for buckle are being decreased. It is possible that opposite cases can be happened and it is also compared and studied. Therefore, we present a reasonable model for analyzing CWR within the property of steel plate girder railway bridges in Korea. Furthermore, the results analyzed for stability is compared and evaluated with tests. Finally, a reasonable method for the installation of CWR on bridges without ballast is suggested.

  • PDF

Improvement and Behavior Analysis of Track Structure for Urban Maglev System (도시형 자기부상철도 궤도구조 개선 및 거동분석)

  • Choi, Eun-Soo;Lee, Hee-Up;Kim, Lee-Hyeon;Chung, Won-Seok
    • Proceedings of the KSR Conference
    • /
    • 2006.11a
    • /
    • pp.239-252
    • /
    • 2006
  • The existing track structure for urban Maglev system is designed for the Maglev vehicles of HSST in Japan and UTM in Korea. The tracks hvaing cross beams for supporting rails are located on bridge girders and have several draw backs. Linimo in Nagoya, Japan, the first commercial urban Maglev line, has separated tracks from a bridge to overcome the previous track structure. However, the Linimo just put the existing track on bridge deck. This study suggests a improved track structure for urban Maglev system and compares the behavior of the new and existing track through static structural analyses. In the improved track, the power collector of a Maglew vehicle is installed parallel to the bridge deck surface, and, thus, the bottom width of the track structure is not limited by the vehicle's width. Therefore, the live load is distributed more effectively by the wide bottom of the track. Also, steel plates instead of steel cross beams are used to support rails, and, thus, the rail's deflection is improved.

  • PDF

Dynamic Analysis of I-Type Girder Bridge with HEMU Train Load (I형 거더교의 동력분산형 하중에 대한 동적해석)

  • Lee, Tae-Gyu;Kim, Hye-Uk
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1279-1286
    • /
    • 2010
  • This paper deals with the influence on the dynamic response of I-type girder railway bridge with high-speed electric multiple unit(HEMU) train load. This bridge system which has six I-girder and several cross beams, is modeled with plate and frame elements. And the upper slab is assumed to be fully connected with girders using rigid rinks. Span lengths, types of vehicle and running speeds are selected as parameters for analyses. For more exact analysis, it was adopted that 3-dimensional section of bridge models was produced by the assumed design wheel loads of HEMU vehicle at 200~350 km/hr speeds. Dynamic vertical deflections, dynamic amplification factors and vertical accelerations of bridges having 30 and 35 m span length were investigated and compared with the limit values specified in various national railway bridge specifications.

  • PDF

Requirement Analysis of Geometry of Articulated Turnout for Urban Maglev (도시형 자기부상열차 굴절식 분기기의 선형 요구조건 분석)

  • Jang, Seung-Yup;Hwang, Sung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1324-1329
    • /
    • 2007
  • For the commercialization of the urban maglev, an articulated turnout which consists of several segments of turnout girders and where switching is done by rotating those segments is under development. In this paper, to determine the alignment of this articulated turnout, the requirements for the alignement are analyzed. Requirements include: those for the levitation control and for the ride comfort. For the levitation control, rail joint width should be limited to a certain value, and for the ride comfort, the lateral acceleration and the time derivative of the lateral acceleration satisfy a guideline. According to these requirements, the alignment criteria are discussed.

  • PDF

An Experimental Studies on the Fatigue Behavior of Preflex Girder (프리플렉스형의 피로거동에 관한 실험적 고찰)

  • CHANG, Dong Il;Lee, Myeong Gu;LEE, Seung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.107-116
    • /
    • 1996
  • The studies are conducted to investigate the fatigue and fracture, behavior of preflex girder. In this work, the fatigue tests using by constant amplitude fatigue loading and 4-point-loading to maintain pure bending condition in the mid-span of preflex girder will be performed. It is expected from the results of the studies to provide the fatigue strength and the S-N curve of preflex girders. In addition, it will be ensured that fracture initiation occurs in the welded part of horseshoe-type shear connector as well as in other welded joints.

  • PDF