• Title/Summary/Keyword: ginsenoside-Rh3

Search Result 218, Processing Time 0.026 seconds

처치온도에 따른 초미분화 산양삼의 홍삼화 연구

  • Kim, Jin-Ho;Kwon, Ki-Rok;Lee, Eun-Hee;Cha, Bae-Chun
    • Journal of Pharmacopuncture
    • /
    • v.9 no.3 s.21
    • /
    • pp.117-129
    • /
    • 2006
  • Objectives : The aim of this study was to find optimal conditions for producing red ginseng from cultivated wild ginseng using the Turbo Mill. Methods : Characteristics of powdered cultivated wild ginseng based on various temperature settings of the Turbo Mill were observed, and changes in the content was measured by HPLC for various ginsenosides. Results : 1. The diameter of cultivated wild ginseng powder ground by the Turbo Mill was around 10${\mu}m$. 2. As the temperature rose, pressure, Specific Mechanical Energy(SME), and density decreased, whileas Water Solubility Index(WSI) increased. 3. As the temperature rose, super fine powder showed tendency to turn into dark brown. 4. Measuring content changes by HPLC, there was no detection of ginsenoside Rg3 and ginsenosideRg1, Rb1, and Rh2 concentrations decreased with increase in temperature. Conclusions : Super fine powder of cultivated wild ginseng produced by the Turbo Mill promotes easy absorption of effective ingredients by breaking the cell walls. Using this mechanism to produce red ginseng from cultivated wild ginseng, it yielded less than satisfactory results under the current experiment setup. Further researches are needed to verify more suitable condition for the production of red ginseng.

The Changes of Physicochemical Characteristics and Quality Stability of Korean Red Ginseng (Panax ginseng C.A. Meyer) Stored over 20 Years (20년 이상 장기저장된 홍삼의 이화학적 특성변화 및 품질안정성)

  • Kwak, Yi-Seong;Han, Min Woo;Bae, Bong-Seok;Ahn, Nam-Geun;Yu, Hye Young;Park, Chol-Soo;Baeg, In-Ho;Cho, Byung-Gu
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.4
    • /
    • pp.329-338
    • /
    • 2017
  • This study was investigated the changes of quality stability and physicochemical characteristics of the Korean red ginsengs stored for a long times over 20 years. The Korean red ginsengs were stored for 4 to 22 years in canned packaging with polypropylene film and wooden box at room temperatures. The unusal phenomena such as discoloration and pin hole in packaging were not observed. General bacteria showed the vlaues of below 100 CFU/g, coliform groups and molds were not found in any samples stored for 22 year. Any samples also were not detected in mycotoxins. The contents of moisture, ash and crude saponin were the levels of 10.6~11.1%, 3.8~4.2% and 4.1~4.7% during the whole storage periods, respectively. The contents of maltol, which has been known as characteristic flavour and antioxidant of Korean red ginseng, showed remarkably increasing tendency from 0.10 mg/g for 4 years to 2.53 mg/g for 22 years during the storage. The contents of AFG (arginyl-fructosyl-glucose), arginine and free sugar were slightly decreased. Acidic polysaccharide and ginsenoside were not changed significantly during the storage periods. The contents of acidic polysaccharide and total ginsenosides were the 75.1~76.3 mg/g and 15.1~16.6 mg/g, respectively. The sums of ginsenoside-Rg1,-Rb1 and -Rg3s were the ranges of 9.3~9.9 mg/g and PD (ginsenoside-Rb1, -Rb2,-Rc,-Rd,-Rg3s,-Rg3r)/PT (ginsenoside-Rg1,-Rg2,-Re,-Rf,-Rh1) saponin ratios were the levels of 1.4~1.5. These results suggest that Korean red ginsengs stored for long periods show relatively stable quaility stabilities and not significantly changed the contents of ginsenoside and polysaccharide during the storage up to 22 years.

Review of Red Ginseng in terms of Mechanisms for Pharmacodynamics and Toxicity (홍삼의 약리와 독성 기전에 대한 고찰)

  • Park, Yeong-Chul;Lim, Jung-Dae;Kim, Jong-Bong;Lee, Sundong
    • The Journal of Korean Medicine
    • /
    • v.33 no.3
    • /
    • pp.200-230
    • /
    • 2012
  • Objectives: Ginseng, Panax ginseng C. A., white ginseng, has been used for thousands of years in Traditional Korean Medicine. Red ginseng can be made by a steaming process of white ginseng changing a variety of ginsenosides and ingredients such as dencichine. This article reviews red ginseng for mechanisms for pharmacodynamics and toxicity based on the content of ginseng's active ingredients, ginsenoside changed by steaming. Methods: The following electronic databases were searched: PubMed, Science Direct and Chinese Scientific Journals full text database (CQVIP), and KSI (Korean Studies Information) from their respective inceptions to June 2012. Results: Compared with unsteamed ginseng, the content of ginsenosides Rg2, Rg3, Rg5, Rh1, Rh2 and Rk1 called red ginseng-specific ginsenosides increased after the steaming process. Different ginsenosides have shown a wide variety of effects such as lowering or raising blood sugar and blood pressure or stimulating or sedating the nervous system. Especially, the levels of Rg2, Rg3, Rg5, Rh1, Rh2 and Rk1 were increased by the steaming process, showing a variety of pharmacodynamics in biological systems. Also, various processing methods such as puffing and fermentation have been developed in processing crude ginseng or red ginseng, affecting the content of ginseng's ingredients. The safety issue could be the most critical, specifically, on changed ginseng's ingredients such as dencichine. The level of dencichine was significantly reduced in red ginseng by the steaming process. In addition, the possible toxicity for red ginseng was affected by cytochrome P450, a herbal-drug interaction. Conclusions: The variety of pharmacological and toxicological properties should be changed by steaming process of Panax ginseng C. A., white ginseng. Even if it is not sure whether the steaming process of white ginseng would be better pharmacologically, it is sure that steaming reduces the level of dencichine causing a lower toxicity to the nervous system.

Seven New Ginsenosides From a New Processed Ginseng

  • Park, Jeong-Hill;Kim, Jong-Moon;Han, Sang-Beom;Kim, Na-Young;Lee, Seung-Ki;Kim, Nak-Doo;Park, Man-Ki;Han, Byung-Hoon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.175-175
    • /
    • 1998
  • We reported a new processed ginseng with increased biological activities which is named as “sun ginseng (SG)”. Study on the saponin constituents of SG led to the isolation of seven new ginsenosides named as ginsenoside Rk$_1$, Rk$_2$, Rk$_3$, Rs$_4$, Rs$\_$5/, Rs$\_$6/ and Rs$\_$7/. Ginsenoside Rk$_1$, Rk$_2$ and Rk$_3$ were the Δ$\^$20(21),24(25)/-diene dammarane compounds, while ginsenoside Rs$_4$, Rs$\_$5/, Rs$\_$6/ and Rs$\_$7/ were mono-acetylated compounds. Many other ginsenosides which were reported as minor constituents of red ginseng were also isolated, which include 20(S)-Rg$_3$, 20(R)-Rg$_3$, Rg$\_$5/, Rg$\_$6/, F$_4$, Rh$_4$, 20(S)-Rs$_3$ and 20(R)-Rs$_3$. The major ginsenosides of SG were 20(S)-Rg$_3$, 20(R)-Rg$_3$, Rk$_1$ and Rg$\_$5/.

  • PDF

Microbial Conversion of Ginsenoside from the Extract of Korean Red Ginseng (Panax ginseng) by Lactobacillus sp.

  • Cho, Hye-Jin;Jung, Eun-Young;Oh, Sung-Hoon;Yoon, Brian;Suh, Hyung-Joo;Lee, Hyun-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.2
    • /
    • pp.105-112
    • /
    • 2010
  • Thirty-four strains of Lactobacillus species were isolated from soil and eight of these isolates (M1-4 and P1-4) were capable of growing on red ginseng agar. The M1 and P2 strains were determined to be L. plantarum and other strains (M2, M3, M4, P1, P3 and P4) were determined to be L. brevis. Fermentation of red ginseng extract (RGE) with strains M1, M2, P2 and P4 resulted in a low level of total carbohydrate content (174.3, 170.0, 158.8 and 164.8 mg/mL, respectively). RGE fermented by M3 showed a higher level of uronic acid than the control. The polyphenol levels in RGE fermented by M1, P1 and P2 (964.9, 941.7 and $965.3\;{\mu}g/mL$, respectively) were higher than the control ($936.8\;{\mu}g/mL$). Total saponin contents in fermented RGE (except M1) were higher than the control. RGE fermented by M2 and M3 had the highest levels of total ginsenosides (31.7 and 32.7 mg/mL, respectively). The levels of the ginsenoside Rg3 increased from 2.6 mg/mL (control) to 3.0 mg/mL (M2) or 3.1 mg/mL (M3). RGE fermented by M2 and M3 also had the highest levels of Rg5+Rk1 (7.7 and 8.3 mg/mL, respectively). Metabolite contents of ginsenoside (sum of CK, Rh1, Rg5, Rk1, Rg3 and Rg2) of M2 (13.0 mg/mL) and M3 (13.9 mg/mL) were also at a high level among the fermented RGE. Protopanaxadiol and protopanaxatriol content of ginsenoside of M2 (10.9 and 5.4 mg/mL, respectively) and M3 (11.0 and 5.7 mg/mL, respectively) were at higher levels than other fermented RGE.

Changes in the ginsenoside content during the fermentation process using microbial strains

  • Lee, So Jin;Kim, Yunjeong;Kim, Min-Gul
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.392-397
    • /
    • 2015
  • Background: Red ginseng (RG) is processed from Panax ginseng via several methods including heat treatment, mild acid hydrolysis, and microbial conversion to transform the major ginsenosides into minor ginsenosides, which have greater pharmaceutical activities. During the fermentation process using microbial strains in a machine for making red ginseng, a change of composition occurs after heating. Therefore, we confirmed that fermentation had occurred using only microbial strains and evaluated the changes in the ginsenosides and their chemical composition. Methods: To confirm the fermentation by microbial strains, the fermented red ginseng was made with microbial strains (w-FRG) or without microbial strains (n-FRG), and the fermentation process was performed to tertiary fermentation. The changes in the ginsenoside composition of the self-manufactured FRG using the machine were evaluated using HPLC, and the 20 ginsenosides were analyzed. Additionally, we investigated changes of the reducing sugar and polyphenol contents during fermentation process. Results: In the fermentation process, ginsenosides Re, Rg1, and Rb1 decreased but ginsenosides Rh1, F2, Rg3, and Compound Y (C.Y) increased in primary FRG more than in the raw ginseng and RG. The content of phenolic compounds was high in FRG and the highest in the tertiary w-FRG. Moreover, the reducing sugar content was approximately three times higher in the tertiary w-FRG than in the other n-FRG. Conclusion: As the results indicate, we confirmed the changes in the ginsenoside content and the role of microbial strains in the fermentation process.

Roles of ginsenosides in inflammasome activation

  • Yi, Young-Su
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.172-178
    • /
    • 2019
  • Inflammation is an innate immune response that protects the body from pathogens, toxins, and other dangers and is initiated by recognizing pathogen-associated molecular patterns or danger-associated molecular patterns by pattern-recognition receptors expressing on or in immune cells. Intracellular pattern-recognition receptors, including nucleotide-binding oligomerization domain-like receptors (NLRs), absent in melanoma 2, and cysteine aspartate-specific protease (caspase)-4/5/11 recognize various pathogen-associated molecular patterns and danger-associated molecular patterns and assemble protein complexes called "inflammasomes." These complexes induce inflammatory responses by activating a downstream effector, caspase-1, leading to gasdermin D-mediated pyroptosis and the secretion of proinflammatory cytokines, such as interleukin $(IL)-1{\beta}$ and IL-18. Ginsenosides are natural steroid glycosides and triterpene saponins found exclusively in the plant genus Panax. Various ginsenosides have been identified, and their abilities to regulate inflammatory responses have been evaluated. These studies have suggested a link between ginsenosides and inflammasome activation in inflammatory responses. Some types of ginsenosides, including Rh1, Rg3, Rb1, compound K, chikusetsu saponin IVa, Rg5, and Rg1, have been clearly demonstrated to inhibit inflammatory responses by suppressing the activation of various inflammasomes, including the NLRP3, NLRP1, and absent in melanoma 2 inflammasomes. Ginsenosides have also been shown to inhibit caspase-1 and to decrease the expression of $IL-1{\beta}$ and IL-18. Given this body of evidence, the functional relationship between ginsenosides and inflammasome activation provides new insight into the understanding of the molecular mechanisms of ginsenoside-mediated antiinflammatory actions. This relationship also has applications regarding the development of antiinflammatory remedies by ginsenoside-mediated targeting of inflammasomes, which could be used to prevent and treat inflammatory diseases.

Comparative Properties of Red Ginseng Prepared with Different Cultivation Years of Fresh Ginseng Produced in Punggi Region (풍기지역 연근별 수삼의 홍삼가공 특성 비교)

  • Kwon, Joong-Ho;Kim, Kyo-Youn;Kwon, Young-Ju;Kim, Mi-Yeung;Yoon, Sung-Ran;Chung, Hun-Sik;Lee, Ki-Teak;Cho, Soon-Heang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.1
    • /
    • pp.72-75
    • /
    • 2008
  • Quality properties of red ginseng prepared with different cultivation years of fresh ginseng produced in Punggi region were investigated. Fresh ginseng cultivated for 4, 5, or 6 years was steamed for 3.5 hr and dried for 24 hr at $60{\sim}65^{\circ}C$ and subsequently for $3{\sim}4$ days at $40^{\circ}C$ under commercial conditions. Compared to 6 years-old roots, the five years-old roots showed similar or some lower quality properties in terms of color, appearance, diameter, and inside quality, but higher ones in length and yield of prepared red ginseng. In particular, the levels of ginsenoside $Rg_3$ and $Rh_2$, which are known as specific components in red ginseng, were the highest in 5 years-old roots. The result shows that fresh ginseng of 5 years-old roots produced in Punggi region can be utilized as a raw material for the manufacture of high-quality red ginseng.

Proximate Analysis and Antioxidant Activity of Cultivated Wild Panax ginseng (연근별 산양삼의 일반성분 및 항산화 효과)

  • Lee, Geun;Choi, Gwang-Su;Lee, Ju-Yeol;Yun, So-Jung;Kim, Wooki;Lee, Hyungjae;Baik, Moo-Yeol;Hwang, Jae-Kwan
    • Food Engineering Progress
    • /
    • v.21 no.3
    • /
    • pp.208-214
    • /
    • 2017
  • Proximate analysis and antioxidant activity of cultivated wild Panax ginseng (CWPG) were investigated to provide fundamental information of CWPG with different ages and to increase its industrial application. Proximate analyses of CWPG with different ages were performed. Extraction of CWPG with different ages was carried out using heat-reflux extraction, and their extraction yield, crude saponin content, ginsenoside content, and antioxidant activity were analyzed. Moisture content decreased, but crude fat and crude protein were increased with aging. Extraction yield and crude saponin contents did not show a specific pattern while 5-year-old CWPG revealed the highest extraction yield and crude saponin content. All CWPGs showed typical ginsenoside profiles containing C-K and Rh2 ginsenosides, which are not found in ginseng. The 3-year-old CWPG showed the highest antioxidant activity including total phenolic content, total flavonoid content, and DPPH and ABTS radical scavenging activities. Moreover, 3-year-old CWPG also revealed the highest acidic polysaccharide content. Therefore, these results suggested that 3-year-old CWPG, which is the cheapest, can be used in industrial application due to its high antioxidant activity and acidic polysaccharide content with similar ginsenoside profile compared to 5- and 7-year-old CWPGs.

Yield and Quality Characteristics of Ginseng's First Byproducts (인삼 1차 부산물의 생산량 및 기능성 성분 특성)

  • Kim, Gwan-Hou;Seong, Bong-Jae;Kim, Sun-Ick;Han, Seung-Ho;Kim, Hyun-Ho;Lee, Ka-Soon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.5
    • /
    • pp.313-318
    • /
    • 2011
  • This study was carried out to utilize the byproducts (flower, immature and mature berry, leaf and stem) of ginseng. Yield of byproducts were $32.7{\pm}9.8g$ in flower, $68.2{\pm}2.2g$ in immature berry, $48.5{\pm}4.3g$ in mature berry, $316.2{\pm}20.5g$ in leaf, and $296.6{\pm}15.4g$ in stem per $3.3m^2$ ($180{\times}90cm$, ginseng root $675.5{\pm}35.7g$/drybasis. The total saponin contents of ginseng byproducts and root are $52.36{\pm}1.24$, $68.71{\pm}1.98$, $168.89{\pm}0.57$, $68.26{\pm}1.32$, $7.85{\pm}0.61$ and $35.08{\pm}0.96$ mg/g, respectively. The main ginsenoside of all byproducts was Re and the highest content was $132.23{\pm}1.56$ mg/g in mature berry. But flower and berry was not detected Rf and Rh1, respectively. Total polyphenolic compound content on mature berry was the highest, $2.242{\pm}0.140%$, after, immature berry > leaf > flower > root > stem order. The DPPH radical scavenging activity on mature berry was the highest, $0.115{\pm}0.004$ mg/mL($IC_{50}$), and the others were the same order of polyphenolic compound and ginsenoside content on byproducts.