• Title/Summary/Keyword: ginsenoside Rh3

Search Result 217, Processing Time 0.031 seconds

Quality and Functional Properties of Red Ginseng Prepared with Different Steaming Time and Drying Methods (원료삼의 증삼 및 건조 조건별 홍삼의 품질 및 기능성)

  • Kim, Kyo-Youn;Shin, Jin-Ki;Lee, Su-Won;Yoon, Sung-Ran;Chung, Hun-Sik;Jeong, Yong-Jin;Choi, Myung-Sook;Lee, Chi-Moo;Moon, Kwang-Deog;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.494-499
    • /
    • 2007
  • The quality and functional properties of red ginseng in relation to steaming and drying conditions were evaluated. Fresh ginseng (5-year roots), cultivated in the Punggi region, were steamed for 2.5, 3.5, or 4.5 hr, and then dried by hot-air (60-$65^{\circ}C$/24 hr and $40^{\circ}C$,/3-4d) freezing ($-80^{\circ}C$/56 hr), and infrared (900 W/$62^{\circ}C$/68 hr). Hunter#s yellowness (b-value) and browning indexes (420 nm) of the samples were higher in the rootlets than in the main roots. Furthermore, these same index values were found to be high in the order of 3.5, 4.5, and 2.5 hr and infrared, hot-air, and freezing for steaming and subsequent drying, respectively. Analysis of soluble solids, total phenolics, total flavonoids, acidic polysaccharides, and electron donating abilities of the steamed and dried samples showed that 3.5hr of steaming with infrared drying was optimal. However, crude saponin contents were not influenced by steaming and drying conditions. The contents of $ginsenoside-Rg_l$, -Re, -Rf and $-Rb_2$, which were the major components in the samples, were reduced with steaming time, while the amounts of $-Rg_3$ and $-Rh_2$ increased, reaching the highest levels at 3.5 and 4.5 hr in the main roots and rootlets, respectively. The contents of $-Rg_3$ and $-Rh_2$ were similar in both the freeze-dried and hot-air dried samples.

Enzymatic formation of compound-K from ginsenoside Rb1 by enzyme preparation from cultured mycelia of Armillaria mellea

  • Upadhyaya, Jitendra;Kim, Min-Ji;Kim, Young-Hoi;Ko, Sung-Ryong;Park, Hee-Won;Kim, Myung-Kon
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.105-112
    • /
    • 2016
  • Background: Minor saponins or human intestinal bacterial metabolites, such as ginsenosides Rg3, F2, Rh2, and compound K, are more pharmacologically active than major saponins, such as ginsenosides Rb1, Rb2, and Rc. In this work, enzymatic hydrolysis of ginsenoside Rb1 was studied using enzyme preparations from cultured mycelia of mushrooms. Methods: Mycelia of Armillaria mellea, Ganoderma lucidum, Phellinus linteus, Elfvingia applanata, and Pleurotus ostreatus were cultivated in liquid media at $25^{\circ}C$ for 2 wk. Enzyme preparations from cultured mycelia of five mushrooms were obtained by mycelia separation from cultured broth, enzyme extraction, ammonium sulfate (30-80%) precipitation, dialysis, and freeze drying, respectively. The enzyme preparations were used for enzymatic hydrolysis of ginsenoside Rb1. Results: Among the mushrooms used in this study, the enzyme preparation from cultured mycelia of A. mellea (AMMEP) was found to convert ginsenoside Rb1 into compound K with a high yield, while those from G. lucidum, P. linteus, E. applanata, and P. ostreatus produced remarkable amounts of ginsenoside Rd from ginsenoside Rb1. The enzymatic hydrolysis pathway of ginsenoside Rb1 by AMMEP was $Rb1{\rightarrow}Rd{\rightarrow}F2{\rightarrow}$ compound K. The optimum reaction conditions for compound K formation from ginsenoside Rb1 were as follows: reaction time 72-96 h, pH 4.0-4.5, and temperature $45-55^{\circ}C$. Conclusion: AMMEP can be used to produce the human intestinal bacterial metabolite, compound K, from ginsenoside Rb1 with a high yield and without food safety issues.

Physicochemical Properties and Composition of Ginsenosides in Red Ginseng Extract as Revealed by Subcritical Water Extraction (아임계수 추출에 의한 홍삼 추출물의 진세노사이드 조성 및 이화학적 특성)

  • Lee, Joo-Mi;Ko, Min-Jung;Chung, Myong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.757-764
    • /
    • 2015
  • Red ginseng was treated by subcritical water extraction (SWE) whose two parameters were the extraction temperature ($105-150^{\circ}C$) and time (5-20 min) under a high pressure. The oBrix value, solid content, color difference, and turbidity of the red ginseng extract increased with increasing extraction time and temperature, while the pH decreased. The total concentration of ginsenosides in the red ginseng extract was maximal at $120^{\circ}C$ and 20 min. The concentrations of ginsenosides Rg3 and Rh1 were maximal at $150^{\circ}C$ and 15 min. The concentrations of Rg3 and Rh1 were respectively 3.5-5 times and 2-2.5 times higher than those treated by conventional extraction methods with hot water, ethanol, and methanol. SWE is a particularly effective method for the selective extraction of less-polar ginsenosides such as Rg3 which is well known to exert strong anticancer effects.

General and Genetic Toxicology of Enzyme-Treated Ginseng Extract - Toxicology of Ginseng Rh2+ -

  • Jeong, Mi-Kyung;Cho, Chong-Kwan;Yoo, Hwa-Seung
    • Journal of Pharmacopuncture
    • /
    • v.19 no.3
    • /
    • pp.213-224
    • /
    • 2016
  • Objectives: Ginseng Rh2+ is enzyme-treated ginseng extract containing high amounts of converted ginsenosides, such as compound k, Rh2, Rg3, which have potent anticancer activity. We conducted general and genetic toxicity tests to evaluate the safety of ginseng Rh2+. Methods: An acute oral toxicity test was performed at a high-level dose of 4,000 mg/kg/day in Sprague-Dawley (SD) rats. A 14-day range-finding study was also conducted to set dose levels for the 90-day study. A subchronic 90-day toxicity study was performed at dose levels of 1,000 and 2,000 mg/kg/day to investigate the no-observed-adverse-effect level (NOAEL) of ginseng Rh2+ and target organs. To identify the mutagenic potential of ginseng Rh2+, we conducted a bacterial reverse mutation test (Ames test) using amino-acid-requiring strains of Salmonella typhimurium and Escherichia coli (E. coli), a chromosome aberration test with Chinese hamster lung (CHL) cells, and an in vivo micronucleus test using ICR mice bone marrow as recommended by the Korean Ministry of Food and Drug Safety. Results: According to the results of the acute oral toxicity study, the approximate lethal dose (ALD) of ginseng Rh2+ was estimated to be higher than 4,000 mg/kg. For the 90-day study, no toxicological effect of ginseng Rh2+ was observed in body-weight changes, food consumption, clinical signs, organ weights, histopathology, ophthalmology, and clinical pathology. The NOAEL of ginseng Rh2+ was established to be 2,000 mg/kg/day, and no target organ was found in this test. In addition, no evidence of mutagenicity was found either on the in vitro genotoxicity tests, including the Ames test and the chromosome aberration test, or on the in vivo in mice bone marrow micronucleus test. Conclusion: On the basis of our findings, ginseng Rh2+ is a non-toxic material with no genotoxicity. We expect that ginseng Rh2+ may be used as a novel adjuvant anticancer agent that is safe for long-term administration.

Effects of Quality Characteristics and Antioxidant Activity of Korean Cultivated Wild Ginseng Extract (산양삼의 품질특성 및 항산화 활성에 미치는 영향)

  • Kang, Kyoung-Myoung;Lee, Jin-Young;Kim, Myung-Uk;Lee, Shin-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1740-1746
    • /
    • 2016
  • In this study, we investigated the nutritional and functional constituents as well as quality characteristics and antioxidant activity of Korean cultivated wild ginseng (KG). The chemical compositions and amino acid content of KG were 7.56% water, 73.01% carbohydrates, 12.58% protein, 1.99% lipids, and 5.54% ash as well as 16.17 mg/g of amino acids, respectively. The major ginsenoside and minor ginsenoside contents of KG were 15.94 mg/g and 0.04 mg/g, respectively. The total polyphenol and flavonoid contents of KGE (Korean cultivated wild ginseng with 70% ethanol extract) were 8.93 mg GAE/g and 3.96 mg RHE/g, respectively. KGE also showed higher antioxidant activity than the other extracts (KGW, Korean cultivated wild ginseng with water extract) with regard to DPPH and ABTS radical scavenging activities (57.75% and 70.73%, respectively), nitrite oxide scavenging activity (44.01%), SOD-like activity (78.05%), reducing power activity ($1.08OD_{700nm}$), and ferrous ion-chelating activity (65.33%). Additionally, KGE had higher elastase, collagenase, and tyrosinase inhibition activities than KGW. These results suggest that KGE can be used as a bioactive and functional material in the food industry.

Bifidus Fermentation Increases Hypolipidemic and Hypoglycemic Effects of Red Ginseng

  • Trinh, Hien-Trung;Han, Sang-Jun;Kim, Sang-Wook;Lee, Young-Chul;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1127-1133
    • /
    • 2007
  • Antihyperlipidemic and antihyperglycemic effects of Red Ginseng (RG, steamed and dried root of Panax ginseng C.A.Meyer, family Araliaceae), major component of which is ginsenoside Rg3, and Bifidodoterium-fermented RG (FRG), major component of which is ginsenoside Rh2, were investigated. Orally administered RG and FRG potently reduced the serum triglyceride levels in com-oil-induced hypertriglycemidemic mice as well as total cholesterol and triglyceride levels in Triton WR-1339-induced hyperlipidemic mice. Of the saponin and polysaccharide fractions of RG and FRG, the polysaccharide fraction inhibited postprandial blood glucose elevation of maltose- or starch-loaded mice and reduced the blood triglyceride levels in com-oil-induced hypertriglycemidemic mice. The saponin fraction and its ginsenosides Rg3 and Rh2 reduced blood triglyceride and total cholesterol levels in Triton WR1339-induced hyperlipidemic mice. The inhibitory effect of FRG and its main constituents against hyperlipidemia and hyperglycemia in mice were more potent than those of RG. These findings suggest that hypolipidemic and hypoglycemic effects of RG can be enforced by Bifidus fermentation and FRG may improve hyperlipidemia and hyperglycemia.

Anticancer activity of ginsenosides Rh2 on various cancer cells

  • Seun Eui Kim;Myoung-Hoon Lee;Hye-Myoung Jang;Wan-Taek Im;Joontaik Lee;Sang-Hwan Kim;Gwang Joo Jeon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.131-142
    • /
    • 2023
  • Background: This study has mainly focused on finding pharmacological effects of ginsenosides that can reduce the unwanted side effects of the cytotoxic anticancer drugs and are highly effective on prostate cancer, colorectal cancer, liver cancer, hormone-dependent breast cancer, triple-negative breast cancer, and brain cancer (neuroblastoma). Methods: Minor and rare ginsenosides (GS) of Rh2 which have a high absorption ability and excellent pharmacological actions were treated with the 6 different types of cancer cell lines and their anticancer activities were investigated by analyzing gene expressions associated with various cancers through qPCR and other relevant methods. Results: In cancer cells exposed to Rh2, cell viability and cell migration were reduced, and apoptosis was induced. Each cancer cell was divided into three groups according to the cell proliferation response by Rh2; 1) A group in which the cell viability decreases inversely to an increase in Rh2 treatment concentration; 2) A group in which the cell viability rapidly decreases in Rh2 treatment above a certain level of concentration; 3) A group in which the cell viability was not suppressed below 20-30% even with 100 μL of Rh2, the highest concentration used in this study. Conclusions: It was shown that Rh2 has a significant effect on inhibiting the proliferation of prostate cancer cells and hormone-dependent breast cancer cells.

Integrative applications of network pharmacology and molecular docking: An herbal formula ameliorates H9c2 cells injury through pyroptosis

  • Zhongwen Qi;Zhipeng Yan;Yueyao Wang;Nan Ji;Xiaoya Yang;Ao Zhang;Meng Li;Fengqin Xu;Junping Zhang
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.228-236
    • /
    • 2023
  • Background: QiShen YiQi pills (QSYQ) is a Traditional Chinese Medicine (TCM) formula, which has a significant effect on the treatment of patients with myocardial infarction (MI) in clinical practice. However, the molecular mechanism of QSYQ regulation pyroptosis after MI is still not fully known. Hence, this study was designed to reveal the mechanism of the active ingredient in QSYQ. Methods: Integrated approach of network pharmacology and molecular docking, were conducted to screen active components and corresponding common target genes of QSYQ in intervening pyroptosis after MI. Subsequently, STRING and Cytoscape were applied to construct a PPI network, and obtain candidate active compounds. Molecular docking was performed to verify the binding ability of candidate components to pyroptosis proteins and oxygen-glucose deprivation (OGD) induced cardiomyocytes injuries were applied to explore the protective effect and mechanism of the candidate drug. Results: Two drug-likeness compounds were preliminarily selected, and the binding capacity between Ginsenoside Rh2 (Rh2) and key target High Mobility Group Box 1 (HMGB1)was validated in the form of hydrogen bonding. 2 μM Rh2 prevented OGD-induced H9c2 death and reduced IL-18 and IL-1β levels, possibly by decreasing the activation of the NLRP3 inflammasome, inhibiting the expression of p12-caspase1, and attenuating the level of pyroptosis executive protein GSDMD-N. Conclusions: We propose that Rh2 of QSYQ can protect myocardial cells partially by ameliorating pyroptosis, which seems to have a new insight regarding the therapeutic potential for MI.

Change of Korean Ginseng Components with High Temperature and Pressure Treatment (고온고압처리에 의한 인삼의 성분 변화)

  • Yang, Seung-Joon;Woo, Koan-Sik;Yoo, Jeong-Sik;Kang, Tae-Su;Noh, Young-Hee;Lee, Jun-Soo;Jeong, Heon-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.521-525
    • /
    • 2006
  • Korean ginseng was heat treated at various temperatures (110, 120, 130, 140 and $150^{\circ}C$) and times (1, 2, 3, 4, and 5 hr). The heat treated ginseng extract was analyzed for the total polyphenol content, total flavonoid content, DPPH free-radical scavenging, 5-HMF and ginsenoside. The total phenolics and flavonoid content increased with increasing treatment temperature and time. The highest total phenolics content was 29.46 mg/g (d.b) in $150^{\circ}C$ for 1hr (control: 2.68 mg/g). The highest total flavonoid content was 4.75mg/g (d.b) in $150^{\circ}C$ for 2hr (control: 0.39 mg/g). The antioxidant activity increased until $140^{\circ}C$ for 3 hours. An extension of the treatment time did not have any effect, and the antioxidant activity decreased at temperatures higher than $150^{\circ}C$ for more than 2 hours. The content of ginsenoside $Rg_1$, Re, $Rb_2$ and Rb3 rapidly decreased with increasing treatment temperature and time. Ginsenoside $Rg_3$ and $Rh_2$ were newly produced, or their contents increased with increasing treatment temperature and time.

Changes in ginsenoside compositions and antioxidant activities of hydroponic-cultured ginseng roots and leaves with heating temperature

  • Hwang, Cho Rong;Lee, Sang Hoon;Jang, Gwi Yeong;Hwang, In Guk;Kim, Hyun Young;Woo, Koan Sik;Lee, Junsoo;Jeong, Heon Sang
    • Journal of Ginseng Research
    • /
    • v.38 no.3
    • /
    • pp.180-186
    • /
    • 2014
  • Background: This study evaluated changes in ginsenoside compositions and antioxidant activities in hydroponic-cultured ginseng roots (HGR) and leaves (HGL) with heating temperature. Methods: Heat treatment was performed at temperatures of $90^{\circ}C$, $110^{\circ}C$, $130^{\circ}C$, and $150^{\circ}C$ for 2 hours Results: The ginsenoside content varied significantly with heating temperature. The levels of ginsenosides Rg1 and Re in HGR decreased with increasing heating temperature. Ginsenosides F2, F4, Rk3, Rh4, Rg3 (S form), Rg3 (R form), Rk1, and Rg5, which were absent in the raw ginseng, were formed after heat treatment. The levels of ginsenosides Rg1, Re, Rf, and Rb1 in HGL decreased with increasing heating temperature. Conversely, ginsenosides Rk3, Rh4, Rg3 (R form), Rk1, and Rg5 increased with increasing heating temperature. In addition, ginsenoside contents of heated HGL were slightly higher than those of HGR. The highest extraction yield was 14.39% at $130^{\circ}C$, whereas the lowest value was 10.30% at $150^{\circ}C$ After heating, polyphenol contents of HGR and HGL increased from 0.43 mg gallic acid equivalent/g (mg GAE eq/g) and 0.74 mg GAE eq/g to 6.16 mg GAE eq/g and 2.86 mg GAE eq/g, respectively. Conclusion: Antioxidant activities of HGR and HGL, measured by 1,1-diphenyl-2-picrylhydrazyl and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical scavenging ability, increased with increasing heating temperature. These results may aid in improving the biological activity and quality of ginseng subjected to heat treatments.