• 제목/요약/키워드: ginsenoside Rg2

검색결과 558건 처리시간 0.023초

인삼유래 Ginsenoside Rg3에 의한 항-주름 효과 (Anti-wrinkle Effect by Ginsenoside Rg3 Derived from Ginseng)

  • 김성우;정지헌;조병기
    • 대한화장품학회지
    • /
    • 제30권2호
    • /
    • pp.221-225
    • /
    • 2004
  • 인삼(Panax ginseng C. A Meyer)의 뿌리는 전통적인 항-노화 및 항-주름제로 동양에서 사용되어 왔다. 그러나 인삼의 어떤 성분이 주름 형성을 억제하는데 효과적인지는 아직 밝혀지지 않았다. 최근 인삼의 주요 활성 성분으로 생각되는 ginsenosides가 20가지 이상 분리되었다. 이들 중 본 연구원들은 인삼에 의한 항-주름의 작용기작을 밝히기 위해 세포간질(extracellular matrix, ECM) 물질대사에 있어 ginsenoside Rg3의 진피에서의 효과를 시험하였다. 본 연구에서, ginsenoside Rg3의 항-주름 효과를 연구하기 위해 진피의 세포간질 구성 성분과 성장 인자를 ELISA (enzyme-1in14ed immunosorbent assay) 측정법으로 평가하였다. Ginsenoside Rg3은 human dermal fibroblasts 배양에서 type I procollagen과 fibronectin(FN) 생합성을 농도 증가에 비례하여 촉진시키고(p < 0.05, n=3), 농도에 비례하여 TGF-$\beta$1 수준을 증가 (p < 0.05, n=3) 시키는 것으로 밝혀졌다. RT-PCR 분석에서 AP-1 전사 인자(transcription factor)의 일부인 c-Jun의 mRNA 수준이 human dermal fibroblasts에서 ginsenoside Rg3에 의해 감소되었다. 이들 결과들은 ginsenoside Rg3이 fibroblasts에서 TGF-$\beta$1과 AP-1의 발현을 변화시킴으로써 type I collagen과 FN합성을 촉진시킴을 보여준다.

Change of Ginsenoside Composition in Ginseng Extract by Vinegar Process

  • Ko, Sung-Kwon;Lee, Kyung-Hee;Hong, Jun-Kee;Kang, Sung-An;Sohn, Uy-Dong;Im, Byung-Ok;Han, Sung-Tai;Yang, Byung-Wook;Chung, Sung-Hyun;Lee, Boo-Yong
    • Food Science and Biotechnology
    • /
    • 제14권4호
    • /
    • pp.509-513
    • /
    • 2005
  • The purpose of this study was to develop a new preparation process of ginseng extract using high concentrations of ginsenoside $Rg_3$, a special component in red ginseng. From when the ginseng saponin glycosides transformed into the prosapogenins chemically, they were analyzed using the HPLC method. The ginseng and ginseng extract were processed with several treatment conditions of an edible brewing vinegar. The results indicated that ginsenoside $Rg_3$ quantities increased over 4% at the pH 2-4 level of vinegar treatment. This occurred at temperatures above $R90^{\circ}C$, but not occurred at other pH and temperature condition. In addition, the ginseng and ginseng extract were processed with the twice-brewed vinegar (about 14% acidity). This produced about 1.5 times more ginsenoside $Rg_3$ than those processed with regular amounts of brewing vinegar (about 7% acidity) and persimmon vinegar (about 3% acidity). Though the white ginseng extract was processed with the brewing vinegar over four hr, there was no change for ginsenoside $Rg_3$. However, the VG8-7 was the highest amount of ginsenoside $Rg_3$ (4.71%) in the white ginseng extract, which was processed with the twice-brewed vinegar for nine hr. These results indicate that ginseng treated with vinegar had 10 times the quantity of ginsenoside $Rg_3$, compared to the amount of ginsenoside $Rg_3$ in the generally commercial red ginseng, while ginsenoside $Rg_3$ was not found in raw and white ginseng.

팽화 홍삼으로부터 20(S)-Ginsenoside Rg3와 Rg5의 분리 및 구조동정 (Isolation of 20(S)-Ginsenoside Rg3 and Rg5 from the Puffed Red Ginseng)

  • 안영은;조진경;백남인;최성원;허남윤;박석준;김병용;백무열
    • 산업식품공학
    • /
    • 제14권2호
    • /
    • pp.159-165
    • /
    • 2010
  • 팽화홍삼으로부터 용매추출, 용매분획 및 silica gel column chromatography를 반복하여 두 개의 화합물을 분리하였다. 이들 두 화합물의 결정특성, 녹는점, 비선광도, Infrared spectrum 분석 결과, TLC에서의 Rf값, HPLC에서의 retention time 및 NMR 데이터를 측정하여 고찰한 결과 두 개의 화합물은 20(S)-ginsenoside Rg3와 ginsenoside Rg5임을 확인할 수 있었다. 특히 $^{1}H$- 및 $^{13}C$-NMR 데이터를 HSQC 및 HMBC와 같은 2D-NMR 실험을 통하여 더욱 정확하게 동정하였다.

Effect of Red Ginseng and Its Representative Constituents, Ginsenosides Rg3 and Rh2, on Dextran Sulfate Sodium-induced Colitis in Mice

  • Yoo, Young-Ik;Lee, Hae-Sung;Kim, Dong-Hyun;Han, Myung-Joo
    • Food Science and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.262-266
    • /
    • 2009
  • To evaluate the anticolitic effect of red ginseng (RG, the steamed root of Panax ginseng CA. Meyer, Araliaceae), RG and its representative constituents, ginsenosides Rg3 and Rh2, were orally administered to dextran sulfate sodium (DSS)-induced colitic mice and inflammatory markers investigated. RG and its constituents, ginsenosides Rg3 and Rh2, inhibited colon shortening and myeloperoxidase activity induced by DSS. The ginsenosides Rg3 and Rh2 inhibited mRNA expression of interleukin (IL)-$1{\beta}$ as well as protein levels of IL-$1{\beta}$ and IL-6. These ginsenosides also inhibited the activation of a transcription nuclear factor (NF)-${\kappa}B$. Ginsenoside Rh2 was a more potent inhibitor than ginsenoside Rg3. The anticolitic effects of these ginsenosides were comparable with sulfasalazine.

인삼.산양삼.자연산 산삼의 ginsenoside 함량 분석 및 홍삼화 후의 변화 관찰 (Component analysis of cultivated ginseng, cultivated wild ginseng, and wild ginseng and the change of ginsenoside components in the process of red ginseng)

  • 정희선;임청산;차배천;최석호;권기록
    • 대한약침학회지
    • /
    • 제13권1호
    • /
    • pp.63-77
    • /
    • 2010
  • Objectives: The aim of this experiment is to provide an objective differentiation of cultivated ginseng, cultivated wild ginseng, and wild ginseng through component analysis, and to know the change of ginsenoside components in the process for making red ginseng. Methods: Comparative analysis of ginsenoside $Rb_1,\;Rb_2$, Rc, Rd, Re, Rf, $Rg_1,\;Rg_3,\;Rh_1$ and $Rh_2$ from the cultivated ginseng 4 and 6 years, cultivated wild ginseng, and wild ginseng were conducted using High Performance Liquid Chromatography(hereafter HPLC). And the same analyses were conducted in the process of red ginseng. Results: 1. For content comparison of ginsenoside $Rb_1$, Rc, Rd, Rf, $Rg_1$ and $Rh_1$, wild ginseng showed high content, followed cultivated ginseng 4 and 6 years, cultivated wild ginseng showed low content than any other samples. 2. For content comparison of ginsenoside $Rb_2$ and Re, cultivated ginseng 4 years showed high content, followed wild ginseng and cultivated ginseng 6 years, cultivated wild ginseng showed low content than any other samples. 3. For content comparison of ginsenoside $Rg_3$, wild ginseng and cultivated wild ginseng were only showed low content. 4. For content comparison of ginsenoside $Rh_2$, cultivated wild ginseng was only showed low content. 5. In the process of red ginseng, ginsenoside $Rb_1,\;Rb_2$, Rc, Rd, $Rg_3$ and $Rh_1$ were increased, and ginsenoside Re and $Rg_1$ were decreased in cultivated wild ginseng. 6. In the process of red ginseng, ginsenoside $Rg_3$ and $Rh_1$ were increased, and ginsenoside $Rb_2$, Rc, and Re were decreased in cultivated ginseng 4 years. 7. In the process of red ginseng, ginsenoside $Rb_1,\;Rb_2$, Rf and $Rh_1$ were increased, and ginsenoside Rc and Rd were decreased in cultivated ginseng 6 years. Conclusions: Distribution of ginsenoside contents to the cultivated ginseng, cultivated wild ginseng, and wild ginseng was similar and was not showed special characteristics between samples. And the change of ginsenoside to the process of red ginseng, cultivated ginseng and cultivated wild ginseng were showed different aspect.

Evaluation of the gastroprotective effects of 20 (S)-ginsenoside Rg3 on gastric ulcer models in mice

  • Zhang, Kai;Liu, Ying;Wang, Cuizhu;Li, Jiannan;Xiong, Lingxin;Wang, Zhenzhou;Liu, Jinping;Li, Pingya
    • Journal of Ginseng Research
    • /
    • 제43권4호
    • /
    • pp.550-561
    • /
    • 2019
  • Background: Gastric ulcer (GU) is a common gastrointestinal disease that can be induced by many factors. Finding an effective treatment method that contains fewer side effects is important. 20 (S)-ginsenoside Rg3 is a kind of protopanaxadiol and has shown superior antiinflammatory and antioxidant effects in many studies, especially cancer studies. In this study, we examined the treatment efficacy of 20 (S)-ginsenoside Rg3 on GU. Methods: Three kinds of GU models, including an alcohol GU model, a pylorus-ligated GU model, and an acetic acid GU model, were used. Mouse endothelin-1 (ET-1) and nitric oxide (NO) levels in blood and epidermal growth factor (EGF), superoxide dismutase, and NO levels in gastric mucosa were evaluated. Hematoxylin and eosin staining of gastric mucosa and immunohistochemical staining of ET-1, inducible nitric oxide synthase (NOS2), and epidermal growth factor receptors were studied. Ulcer index (UI) scores and UI ratios were also analyzed to demonstrate the GU conditions in different groups. Furthermore, Glide XP from $Schr{\ddot{o}}dinger$ was used for molecular docking to clarify the interactions between 20 (S)-ginsenoside Rg3 and EGF and NOS2. Results: 20 (S)-ginsenoside Rg3 significantly decreased the UI scores and UI ratios in all the three GU models, and it demonstrated antiulcer effects by decreasing the ET-1 and NOS2 levels and increasing the NO, superoxide dismutase, EGF, and epidermal growth factor receptor levels. In addition, high-dose 20 (S)-ginsenoside Rg3 showed satisfactory gastric mucosa protection effects. Conclusion: 20 (S)-ginsenoside Rg3 can inhibit the formation of GU and may be a potential therapeutic agent for GU.

Ginsenoside Rg3, a promising agent for NSCLC patients in the pandemic: a large-scale data mining and systemic biological analysis

  • Zhenjie Zhuang;Qianying Chen;Xiaoying Zhong;Huiqi Chen;Runjia Yu;Ying Tang
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.291-301
    • /
    • 2023
  • Introduction: Non-small cell lung cancer (NSCLC) patients are particularly vulnerable to the Coronavirus Disease-2019 (COVID-19). Currently, no anti-NSCLC/COVID-19 treatment options are available. As ginsenoside Rg3 is beneficial to NSCLC patients and has been identified as an entry inhibitor of the virus, this study aims to explore underlying pharmacological mechanisms of ginsenoside Rg3 for the treatment of NSCLC patients with COVID-19. Methods: Based on a large-scale data mining and systemic biological analysis, this study investigated target genes, biological processes, pharmacological mechanisms, and underlying immune implications of ginsenoside Rg3 for NSCLC patients with COVID-19. Results: An important gene set containing 26 target genes was built. Target genes with significant prognostic value were identified, including baculoviral IAP repeat containing 5 (BIRC5), carbonic anhydrase 9 (CA9), endothelin receptor type B (EDNRB), glucagon receptor (GCGR), interleukin 2 (IL2), peptidyl arginine deiminase 4 (PADI4), and solute carrier organic anion transporter family member 1B1 (SLCO1B1). The expression of target genes was significantly correlated with the infiltration level of macrophages, eosinophils, natural killer cells, and T lymphocytes. Ginsenoside Rg3 may benefit NSCLC patients with COVID-19 by regulating signaling pathways primarily involved in anti-inflammation, immunomodulation, cell cycle, cell fate, carcinogenesis, and hemodynamics. Conclusions: This study provided a comprehensive strategy for drug discovery in NSCLC and COVID-19 based on systemic biology approaches. Ginsenoside Rg3 may be a prospective drug for NSCLC patients with COVID-19. Future studies are needed to determine the value of ginsenoside Rg3 for NSCLC patients with COVID-19.

Ginsenoside Rg3의 함량증가를 위한 변환 기술 (Transformation Techniques for the Large Scale Production of Ginsenoside Rg3)

  • 남기열;최재을;박종대
    • 한국약용작물학회지
    • /
    • 제21권5호
    • /
    • pp.401-414
    • /
    • 2013
  • Ginsenoside Rg3 (G-Rg3) contained only in red ginseng has been found to show various pharmacological effects such as an anticancer, antiangiogenetic, antimetastastic, liver protective, neuroprotective immunomodulating, vasorelaxative, antidiabetic, insulin secretion promoting and antioxidant activities. It is well known that G-Rg3 could be divided into 20(R)-Rg3 and 20(S)-Rg3 according to the hydroxyl group attached to C-20 of aglycone, whose structural characteristics show different pharmacological activities. It has been reported that G-Rg3 is metabolized to G-Rh2 and protopanaxadiol by the conditions of the gastric acid or intestinal bacteria, thereby these metabolites could be absorbed, suggesting its absolute bioavailability (2.63%) to be very low. Therefore, we reviewed the chemical, physical and biological transformation methods for the production on a large scale of G-Rg3 with various pharmacological effects. We also examined the influence of acid and heat treatment-induced potentials on for the preparation method of higher G-Rg3 content in ginseng and ginseng products. Futhermore, the microbial and enzymatic bio-conversion technologies could be more efficient in terms of high selectivity, efficiency and productivity. The present review discusses the available technologies for G-Rg3 production on a large scale using chemical and biological transformation.

국내산 백삼과 태극삼의 크기 및 연근별 인삼사포닌 함량 (Ginsenoside Contents of Korean White Ginseng and Taegeuk Ginseng with Various Sizes and Cultivation Years)

  • 황진봉;하재호;허우덕;남궁배;이부용
    • 한국식품과학회지
    • /
    • 제37권3호
    • /
    • pp.508-512
    • /
    • 2005
  • 고려인삼의 수출확대를 위해서 백삼 및 태극삼의 사포닌(saponin) 함량에 대한 중국 고려인삼 수입의약품 둥록기준 설정의 기초 자료를 얻고자 조사하였다. 백삼 50구의 크기에 따른 초특대편, 특대편, 대편, 중편 및 소편의 ginsenoside-Rg1, -Re 및 -Rb1의 평균 함량은 각각 664.7, 796.9, 674.7, 839.0 및 646.6 mg%이었으며, Rg1/Re의 비율은 각각 1.0, 1.2, 0.8, 1.0 및 1.0의 분포였다. 태극삼 13구의 ginsenoside-Rg1, -Re및 -Rb1의 평균 함량은 755.1 mg%, Rg1/Re의 비율은 1.28이었다. 그리고 백삼 50구의 Rg1 평균값은 $232.7{\pm}110.2 mg%$, Re평균값은 $235.3{\pm}101.5 mg%$, Rb1 평균값은 $280.1{\pm}121.3 mg%$으로 이들의 합은 $748.2{\pm}299.4 mg%$이었으며, Rg1/Re의 비율은 1.02이었다. 또한 태극삼 13구의 사포닌 성분의 분석결과, Rg1 평균값은 $262.1{\pm}127.2 mg%$, Re 평균값은 $213.1{\pm}55.7 mg%$, Rb1 평균값은 $279.9{\pm}92.1 mg%$으로 이들의 합은 $755.1{\pm}233.6 mg%$이었다. 백삼과 태극삼의 사포닌 조성 및 함량은 중국수입의약품 등록기준인 ginsenoside-Rg1, -Re 및 -Rb1 값의 합이 0.4% 이상이라는 기준규격에 적합하였고, HPLC-ELSD로 분석시 인삼의 분석방법별 기준인 ginsenoside -Rg1과 -Re의 함량비($Rg1/Re{\Leq}3.87$)에 부합되었다.

A UPLC/MS-based metabolomics investigation of the protective effect of ginsenosides Rg1 and Rg2 in mice with Alzheimer's disease

  • Li, Naijing;Liu, Ying;Li, Wei;Zhou, Ling;Li, Qing;Wang, Xueqing;He, Ping
    • Journal of Ginseng Research
    • /
    • 제40권1호
    • /
    • pp.9-17
    • /
    • 2016
  • Background: Alzheimer's disease (AD) is a progressive brain disease, for which there is no effective drug therapy at present. Ginsenoside Rg1 (G-Rg1) and G-Rg2 have been reported to alleviate memory deterioration. However, the mechanism of their anti-AD effect has not yet been clearly elucidated. Methods: Ultra performance liquid chromatography tandem MS (UPLC/MS)-based metabolomics was used to identify metabolites that are differentially expressed in the brains of AD mice with or without ginsenoside treatment. The cognitive function of mice and pathological changes in the brain were also assessed using the Morris water maze (MWM) and immunohistochemistry, respectively. Results: The impaired cognitive function and increased hippocampal $A{\beta}$ deposition in AD mice were ameliorated by G-Rg1 and G-Rg2. In addition, a total of 11 potential biomarkers that are associated with the metabolism of lysophosphatidylcholines (LPCs), hypoxanthine, and sphingolipids were identified in the brains of AD mice and their levels were partly restored after treatment with G-Rg1 and G-Rg2. G-Rg1 and G-Rg2 treatment influenced the levels of hypoxanthine, dihydrosphingosine, hexadecasphinganine, LPC C 16:0, and LPC C 18:0 in AD mice. Additionally, G-Rg1 treatment also influenced the levels of phytosphingosine, LPC C 13:0, LPC C 15:0, LPC C 18:1, and LPC C 18:3 in AD mice. Conclusion: These results indicate that the improvements in cognitive function and morphological changes produced by G-Rg1 and G-Rg2 treatment are caused by regulation of related brain metabolic pathways. This will extend our understanding of the mechanisms involved in the effects of G-Rg1 and G-Rg2 on AD.