• 제목/요약/키워드: ginseng rust spot

검색결과 3건 처리시간 0.015초

Studies on the Genesis of Ginseng Rust Spots

  • Wang, Yingping;Li, Zhihong;Sun, Yanjun;Guo, Shiwei;Tian, Shuzhen;Liu, Zhaorong
    • Journal of Ginseng Research
    • /
    • 제21권2호
    • /
    • pp.69-77
    • /
    • 1997
  • In order to explain the connection between ginseng rust spot and soil ecological conditions, the bed soils and ginseng roots were sampled at different microrelief units and the reducing substances of the bed soils and iron forms of the ginseng root epi dermises were determined. The results showed that the occurrence of the rust spot was connected with the ecological conditions of the soils and the metabolism of the plant which was caused by the excessive $Fe^{2+}$ in the soil solution. Ginseng rust spot was the enrichment of iron which was mainly composed of organic complex irons. Including active ferrous active ferric and non active ferric forms and they were transformed into each other following the change of soil moisture and temperature regimes. According to the regularity of growth and decline of reducing substances in soil and rust index of ginseng roots as well as the difference of adaptability to excessive $Fe^{2+}$ in soil among different year-old seeding, a new comprehensive measure based on the connection of ameliorating soil and improving cultivation system was recommended to prevent the occurrence of ginseng rust spot.

  • PDF

Characterization of North American Ginseng Rust-Spot and the Effects of Ethephon

  • Campeau, Cindy;Proctor, John T.A.;Murr, Dennis P.;Schooley, Jan
    • Journal of Ginseng Research
    • /
    • 제27권4호
    • /
    • pp.188-194
    • /
    • 2003
  • Rust-spot on North American ginseng roots (Panax quinquefolius L.) is considered a physiological, not a pathological disorder. Ginseng rust-spot starts as an orange spot on the surface of the root and may spread forming a sunken, round to irregular lesion. 5 mm in diameter. Pieces of root, 7 mm in length and containing a rust-spotted lesion, were embedded in agar and sectioned using a vibratome. These sections and hand sections, cut with a two-sided razor blade, were examined using fluorescence microscopy. The 4-5 cell layers of the periderm were destroyed in the area of the lesion and orange substance:, were deposited in and around the lesion. Sections stained with vanillin-HCI and viewed using bright field microscopy confirmed that the orange substances were phenolic compounds. Scanning electron micros-copy showed that the periderm had pulled away from the root, or was completely destroyed, in the area of the lesion. The smooth surface of the lesion indicates the deposition of phenolic compounds in surrounding cells as a wound response. Roots sprayed or dipped in ethephon (1500 mgㆍL$^{-1}$ ) developed rust-spots, more so at 21$\pm$2$^{\circ}C$ than at 3$\pm$0.2$^{\circ}C$. Roots held at 21$\pm$2$^{\circ}C$ were yellowish and developed white cell proliferations. Comparable control roots also developed rust-spots likely due to the high undecomposed organic matter content of the incubation soilless mix.

Different Structural Modifications Associated with Development of Ginseng Root Rot Caused by Cylindrocarpon destructans

  • Kim, Jeong-Ho;Kim, Sang-Gyu;Kim, Mi-Sook;Jeon, Yong-Ho;Cho, Dae-Hui;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • 제25권1호
    • /
    • pp.1-5
    • /
    • 2009
  • Root rot caused by Cylindrocarpon destructans is one of the most important diseases of ginseng (Panax ginseng C. A. Meyer). Two types of symptoms found in ginseng root rot are black root rot and rusty root (rusty spots), in which disease severities are high and low, respectively. Symptom development and related histopathological changes were examined in an inoculation test on 2-year-old ginseng roots using virulent (Cy9801) and avirulent (Cy0001) isolates of C. destructans under different temperature conditions (13, 18, 23, and $28^{\circ}C$). Black root rot was only induced by Cy9801 in the lower temperature range (13, 18, and $23^{\circ}C$) and not at the higher temperature ($28^{\circ}C$). No black root rot, but only rusty spot symptoms, were induced by Cy0001 at all temperatures tested except $13^{\circ}C$, at which no symptoms occurred on over half of inoculation sites, suggesting disease development was influenced by pathogen virulence and temperature. Wound periderms were formed in all root tissues with rust spot symptoms at $28^{\circ}C$ caused by Cy9801 and at 18, 23, and $28^{\circ}C$ temperatures caused by Cy0001. No wound periderm was formed at $13^{\circ}C$ by either Cy9801 or Cy0001. Light microscopy revealed that the wound periderm was formed by initial cell divisions in cell wall formation and/or additional cell wall layering in parenchyma cells without obvious nuclear division, followed by layering of the divided cells adjacent to the inoculation sites, blocking the spread of the rot. These results suggest that disease development declined at lower temperatures and by the formation of a wound periderm at higher temperatures, and that ginseng rusty root may develop under conditions unfavorable for further disease development of C. destructans.