• Title/Summary/Keyword: ginseng root culture

Search Result 173, Processing Time 0.03 seconds

Study on the Changes in Saponins from Ginseng Callus by Tissue Culture -Part 1. Comparison of Saponins from Callus Tissue and from the Root of Ginseng Plant- (조직배양(組織培養)에 의한 인삼성분(人蔘成分)의 변화(變化) -제1보(第一報) Callus와 인삼성분(人蔘成分)의 비교(比較)-)

  • Yang, R.;Choi, Y.C.;Kim, H.J.;Lee, S.C.;Park, S.H.
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.181-188
    • /
    • 1978
  • To study on the changes in saponins from callus mass by tissue culture, the callus was derived from the petiole of Korean Ginseng (Panax Ginseng C.A. Meyer) and cultivated on Murashige and Skoog's agar medium supplemented with 2.4-dichlorophenoxyacetic acid and kinetin for 8 months. Then, well-grown callus was analyzed for its components estimation. The results obtained are as follows: (1) When saponins isolated from callus mass were chromatographed on a silca gel plate, and determined by the thinchrograph TFG-10, the ratio of Rb, c to Rg(f) in saponins was 2.16 to 1 and Rb, c, d to Re, g (f) was 1 to 1.63, while in the case of saponins from the root of Panax Ginseng grown by soil culture, the ratio of Rb, c to Rg(f) was 1.03 to 1 and the ratio of Rb, c,d to Re, g(f) was 1 to 1.17. (2) Sapogenins were obtained from the hydrolysates of saponins, and determined by thinchrograph TFG-10. The ratio of panaxadiol to panaxatriol in sapogenins from callus saponins was 2.66 to 1, while the ratio of panaxadiol to panaxatriol in sapogenins from ginseng root saponins was 1.86 to 1. From the results above mentioned, we concluded that the relative contents of sapogenins in saponins from callus mass by tissue culture were different from those in saponins from ginseng root by soil culture.

  • PDF

Ginseng Exhibit ofthe British Museum in the Eighteenth Century: Obtaining Route and Responses ofthe Contemporaries (18세기 대영박물관에 전시된 인삼: 입수 경로와 당대의 반응)

  • Sul, Heasim
    • Journal of Ginseng Culture
    • /
    • v.3
    • /
    • pp.38-53
    • /
    • 2021
  • This research uncovered that the world-renowned British Museum has displayed ginseng as part of notable exhibitssince its opening. The British Museum was established in 1753 upon the bequest of Sir Hans Sloane, a famous physician, scientist, and collector. At the heart of his collections was the vast amount of vegetable substance specimens. This study first reconstructed Sloane's collection activities in the context of British Imperialism and botanical science in the early modern period. It then traced the origins and routes by which four ginseng specimens were obtained: Radix Ginseng or ninzin from China (VS 532), Ginseng. Id (VS 8,198), the roots and seeds of ginseng (VS 7,825), and ginseng root (VS 12,140). These specimens were presumed to originate from one type of Korean ginseng from China, a Japanese ginseng variant from Japan, and two ginseng species from North America. The English public learned about ginseng and ginseng exhibits via a flourishing printing culture. In England, Korean ginseng was appreciated much more highly than American ginseng.

Studies on the Root Rot of Ginseng(VII) (인삼근부병에 관한 연구. VII)

  • 이민웅
    • Korean Journal of Microbiology
    • /
    • v.15 no.1
    • /
    • pp.20-30
    • /
    • 1977
  • Relationship of soil properties and seasonal variation on microbilogical population to-continuous culture and first-time culture of ginseng was investigated by bimonthly from May 1976 to January 1977. pH and P contents of 2 years continuous culture of soil were higher than other culture plot of soil, and contraty to the above, 2 years first-time culture of ginseng soil was conplot of soil, and contraty to the above, 2 years first-time culture of ginseng soil was contained more potassium contents than other culture plot of soil. In microbiological fluctuation with seasonr in various soil conditions, the population, trends of Fusarium spp., Erwiniaspp., and flourescent Psedudomonas spp. were increased in May and July in general, but decreased in the other month. It was observed that in all type of soil, Fusarium spp. was distributed in abundance in and on rihizosphere, and decreased the propagules numbers as soil depth increase. The numbers of Erwinia spp. and fluorescent Pseudo-monas spp. were distributed greater in numbers on the surface zone of soil depth decreasing the numbers along the soil layer increase, and also in 2years continuous culture of soil especially, a great numbers of Erwinia spp. and fluorescent Pseudomonas were evenly distributed in surface zone and rhizosphere. Ginseng disease with a high incidence of bacterial disease in continuous culture of 2 and 4 years was seemed to be associated with soil bacteria that was high in numbers of Erwinia spp. and fluorescent Pseudomonas spp. in May and July.

  • PDF

Physicochemical Characteristics of 3-Year-Old Ginseng by Various Seeding Density in Direct-Sowing Culture (파종밀도에 따른 직파재배 3년근 인삼의 수량 및 품질 특성)

  • Seong, Bong-Jae;Kim, Gwan-Hou;Kim, Hyun-Ho;Kim, Sun-Ick;Han, Seung-Ho;Lee, Ka-Soon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.1
    • /
    • pp.22-27
    • /
    • 2010
  • This study was carried out to investigate the physicochemical characteristics of 3-year-old ginseng (for Samgyetang product) cultured by various seeding density in direct-sowing culture. Ginsengs were cultured by the seeding density, 275, 300, 330 352 and 396 seeds per Kan, $180{\times}90cm$ area. Survived rate (82.1%) were the highest in plot of 352 seeds sowed, length and leaf width were high in plot of 300 and 352 seeds. Root yield grain was increased with increase of the seeding density in direct-sowing culture except 352 seeds sowed. Average root weight and diameter were the highest in plot of 352 seeds sowed, 31.6 g and 18.4 mm, respectively. Crude saponin and each ginsenosides content were the highest in plot of 275 seeds sowed. Rg1 content was decreased, Rc and Rb2 content were increased with increase of the seeding density. Total soluble sugar content was the highest in plot of 330 seeds sowed and the lowest in plot of 396 seeds sowed, and oligo- and disaccaride content were high in plot of 330 and 352 seeds sowed. Reological characteristics of ginsengs cultivated according to various seeding density, hardness and springness were high and maximum fracture force was low with decrease of the seeding quantity.

Biological Efficacy of Endophytic Bacillus velezensis CH-15 from Ginseng against Ginseng Root Rot Pathogens (인삼내생균 Bacillus velezensis CH-15의 인삼뿌리썩음병 방제 효과)

  • Kim, Dohyun;Li, Taiying;Lee, Jungkwan;Lee, Seung-Ho
    • Research in Plant Disease
    • /
    • v.28 no.1
    • /
    • pp.19-25
    • /
    • 2022
  • Ginseng is an important medicinal plant cultivated in East Asia for thousands of years. It is typically cultivated in the same field for 4 to 6 years and is exposed to a variety of pathogens. Among them, ginseng root rot is the main reason that leads to the most severe losses. In this study, endophytic bacteria were isolated from healthy ginseng, and endophytes with antagonistic effect against ginseng root rot pathogens were screened out. Among the 17 strains, three carried antagonistic effect, and were resistant to radicicol that is a mycotoxin produced by ginseng root rot pathogens. Finally, Bacillus velezensis CH-15 was selected due to excellent antagonistic effect and radicicol resistance. When CH-15 was inoculated on ginseng root, it not only inhibited the mycelial growth of the pathogen, but also inhibited the progression of disease. CH-15 also carried biosynthetic genes for bacillomycin D, iturin A, bacilysin, and surfactin. In addition, CH-15 culture filtrate significantly inhibited the growth and conidial germination of pathogens. This study shows that endophytic bacterium CH-15 had antagonistic effect on ginseng root rot pathogens and inhibited the progression of ginseng root rot. We expected that this strain can be a microbial agent to suppress ginseng root rot.

Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum

  • Song, Minjae;Yun, Hye Young;Kim, Young Ho
    • Journal of Ginseng Research
    • /
    • v.38 no.2
    • /
    • pp.136-145
    • /
    • 2014
  • Background: This study aimed to develop a biocontrol system for ginseng root rot caused by Fusarium cf. incarnatum. Methods: In total, 392 bacteria isolated from ginseng roots and various soils were screened for their antifungal activity against the fungal pathogen, and a bacterial isolate (B2-5) was selected as a promising candidate for the biocontrol because of the strong antagonistic activity of the bacterial cell suspension and culture filtrate against pathogen. Results: The bacterial isolate B2-5 displayed an enhanced inhibitory activity against the pathogen mycelial growth with a temperature increase to $25^{\circ}C$, produced no pectinase (related to root rotting) an no critical rot symptoms at low [$10^6$ colony-forming units (CFU)/mL] and high ($10^8CFU/mL$) inoculum concentrations. In pot experiments, pretreatment with the bacterial isolate in the presumed optimal time for disease control reduced disease severity significantly with a higher control efficacy at an inoculum concentration of $10^6CFU/mL$ than at $10^8CFU/mL$. The establishment and colonization ability of the bacterial isolates on the ginseng rhizosphere appeared to be higher when both the bacterial isolate and the pathogen were coinoculated than when the bacterial isolate was inoculated alone, suggesting its target-oriented biocontrol activity against the pathogen. Scanning electron microscopy showed that the pathogen hyphae were twisted and shriveled by the bacterial treatment, which may be a symptom of direct damage by antifungal substances. Conclusion: All of these results suggest that the bacterial isolate has good potential as a microbial agent for the biocontrol of the ginseng root rot caused by F. cf. incarnatum.

Relationship among Ginsenosides of Panax ginseng Root under the Variation of Mineral Nutrients (무기영양변화에서 인삼근Ginsenoside의 상호관계)

  • Lee, Mee-Kyoung;Min, Jin-Sook;Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.10 no.1
    • /
    • pp.101-107
    • /
    • 1986
  • Relationships among ginsenosides, panaxadiol(PD), panaxatriol(PT), and total saponin(TS) in Panax ginseng root (2nd Year) grown with culture solotion different in nitrogen, phosphorus and potassium level were analyzed by simple correlation, multiple regression and standard partial regression coefficient. The closeness between ginsenosides by simple correlation was closely related with the similarity of molecular structure. The content of PT was much attributed to Re and Rg1. The contribution order of ginsenosides for PD was Rb1>Rb2$\geq$Rd>Rc. There was significant positive correlation between PT and PD but PD increased more rapidly than PT. Thus total saponin depended much on PD and PT/PD decreased with the increase of total saponin content. All ginsenosides, especially Re showed decreasing tendency with the increase of root weight.

  • PDF

Effects of Various Bed Soil Substrates on the Growth and Yield of 2-Year-Old Ginseng Grown in the Closed Plastic House (폐쇄형 하우스를 이용한 인삼 재배에서 상토의 조성이 2년 근 인삼의 생육 및 수량에 미치는 영향)

  • Choi, Jae-Eul;Lee, Nu-Ri;Jo, Seo-Ri;Kim, Jung-Sun;Choi, Yeong-Kyu
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.4
    • /
    • pp.217-221
    • /
    • 2012
  • This research was conducted to investigate the influence of various organic substrates on growth and yield of ginseng seedling grown organically in the closed plastic house. The pH and EC of substrates used for organically ginseng cultivation ranged 5.93~6.78 and 0.03~0.15 dS/m respectively. The concentrations $NH_4$-N and $NO_3$-N respectively was 14.01~68.63 mg/L, 5.60~58.83 mg/L. The average quantum of the closed plastic house was range from 10 to 16% of natural light. In July and August, the maximum temperature of the closed plastic house did not exceed 30 and the average temperature was maintained within 25 lower than the field because air conditioning ran. The PPV-1 and PPV-2 bed soil substrates produced higher stem length, stem diameter, shoot fresh weight and leaf area than those of conventional culture. In PPV-2 bed soil substrates, root fresh weight and root diameter was the highest. The root fresh weight of PPV-2 bed soil substrates in closed plastic house was maximum 25% heavier than the conventional cultivation. The results of this experiment will be utilized for making new substrate application for organic ginseng culture in the plastic house.

Production of Ginsenoside in Callus of Ginseng Hairy Roots (인삼 모상근의 캘러스를 이용한 ginsenoside 생산)

  • Kwon, Jung-Hee;Cheon, Hyun-Choon;Yang, Deok-Cho
    • Journal of Ginseng Research
    • /
    • v.27 no.2
    • /
    • pp.78-85
    • /
    • 2003
  • By the Agrobacterium rhizogenes A$_4$ were induced a transformed callus of ginseng hairy root and examine to find the possibility whether it can produce certain ginsenoside. Investigations for a finding out to optimal culture medium showed that BA application is better than more factorial composition between auxins and cytokinins. For the induction of hairy root callus of ginseng, l/2 MS medium containing 1 to 3 mg of benzyladenine(BA) per liter gave the best result. The growth of ginseng hairy root callus(GHC) cultured with the 1/2MS medium supplemented with 2 mg BA/L was selected for best suspension cultures. The optimum concentration of BA for ginsenosides production was found to be 2 mg/L. Probably the inoculum size of callus plays a role with the ginsenoside production in suspension culture. AS for inoculum size of callus, 50 mg was superior to 150 mg for growth and ginsenoside production. Ginsenoside contents were highest in the suspension culture grown for four weeks under continuous light condition. In fact that continous light treatment promote strongly the synthesis of ginsenoside of the hairy root callus is first result in the world and the numerously induced root hairs of the callus leads a new method for ginsenoside production.

Comparative Evaluation of Modified Bioreactors for Enhancement of Growth and Secondary Metabolite Biosynthesis Using Panax ginseng Hairy Roots

  • Jeong, Gwi-Taek;Park, Don-Hee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.528-534
    • /
    • 2005
  • Hairy root cultures have demonstrated great promise in terms of their biosynthetic capability toward the production of secondary metabolites, but continue to constitute a major challenge with regard to large-scale cultures. In order to assess the possibility of conducting mass production of biomass, and the extraction of useful metabolites from Panax ginseng. P. ginseng hairy roots, transformed by Rhizobium rhizogenes KCTC 2744, were used in bioreactors of different types and sizes. The most effective mass production of hairy roots was achieved in several differently Sized air bubble bioreactors compared to all other bioreactor types. Hairy root growth was enhanced by aeration, and the production increased with increasing aeration rate in a 1 L bioreactor culture. It was determined that the hairy root growth rate could be substantially enhanced by increases in the aeration rate upto 0.5vvm, but at aeration rates above 0.5vvm, only slight promotions in growth rates were observed. In 20 L air bubble bioreactors, with a variety of inoculum sizes, the hairy roots exhibited the most robust growth rates with an inoculum size of 0.1% (w/v), within the range 0.1 to 0.7% (w/v). The specific growth rates of the hairy root decreased with increases in the inoculum size.