• Title/Summary/Keyword: ginseng root culture

Search Result 173, Processing Time 0.021 seconds

The Quality Changes of Less Salty Kimchi Prepared with Extract Powder of Fine Root of Ginseng and Schinzandra Chinensis Juice (미삼과 오미자즙을 첨가한 저염도 배추김치의 특성변화)

  • Cho, In-Young;Lee, Hye-Ran;Lee, Jong-Mee
    • Journal of the Korean Society of Food Culture
    • /
    • v.20 no.3
    • /
    • pp.305-314
    • /
    • 2005
  • This study was conducted to investigate the effects of ginseng and Schizandra chinensis on the quality characteristics of kimchi stored for 40 days at $4^{\circ}C$ after kimchi was fermented for 1 day at $25^{\circ}C$. pH and reducing sugar of GS(Kimchi added with extract powder of fine ginseng root and Schizandra chinensis juice) were the highest in the early part of storage but pH and reducing sugar of G(Kimchi added with extract powder of fine ginseng root) were the highest from 11th storage day. Acidity and $CO_2$ content of GS were the highest during storage period. The $CO_2$ content of GS was the highest significantly and the $CO_2$ content of C(Control) was the lowest significantly. When the hardness was measured, G was the hardest and there were no significant difference between C and GS. Total cells and lactic acid bacteria were increased rapidly at initial fermentation and GS was the highest of 3 samples from 6th storage day. The result of sensory evaluation showed that G was lower in sourness and higher in hardness than C and GS. Ginseng flavor had no significant differences between G and GS. And G was higher than GS in bitter taste. Consumer Acceptance test showed that consumer prefered C and GS to G. Considering all results, it can be concluded that addition of Schizandra chinensis juice to kimchi decreases the bitter taste of ginseng and increasing consumer preference.

Antiepileptical Properties Of Ginsenosides From Korean Red Ginseng And Ginseng Cell Culture (Dan25)

  • ChepurnovS.A.;Park, Jin-Kyu;vanLuijtelaarE.L.J.M;ChepurnovaN.E.;StrogovS.E.;MikhaylovaO.M.;ArtukhovaM.V.;BerdievR.K.;GoncharovO.B.;SergeevV.I.;TolamachevaE.A.
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.116-122
    • /
    • 2000
  • The molecular modification of antiepileptic drugs and direct synthesis of new drugs with the predetermined antiepileptic properties are perspective. New neurochemical attacking to solve the problem including prevention and inhibition of seizures seems to be related to ginsenosides and ginseng polypeptides. The main study based on the severity of febrile convulsions of rat pups has been done from the earlier investigations of antiepileptical action of ginsenosides between KGTRI and MSU (Chepurnov, Park et al., 1995) with different kinds of experimental models of epilepsy. From the cultured cell line DAN25 of ginseng root, the extracts of ginsenosides made in "BIOKHIMMASH" were studied by the project of preclinical anticonvulsant screening (Stables, Kupferberg, 1997). The inhibition of severity of convulsions, decrease of seizures threshold, decrease of audiogenic seizures in rats of different strains and normalization of cerebral blood flow (measured by hydrogen test) were demonstrated in rats after i.c.v., intraperitoneally and orally administration, respectively. The antiepileptical effects by the combination of compounds from ginseng; were compared with the iuluence of Rg1, Rb1, Rc and with the well known antiepileptical drugs such as carbamazepine, valproic acid. The base for the research is obtained by using the WAG/Rij strain (Luijtelaar, Coenen, Kuznetcova), an excellent genetic model for human generalized absence epilepsy. The improving action of gensinosides was effectively demonstrated on the model of electrical kindling of amygdala of WAG/Rij rats with genetically determined absences, and the influences of ginsenosides on the slow wave discharges have also been being investigated. The different characteristics of a kindling process exerted in the sex-different region of the amygdala and demonstrated that the level of sex steroids and content of neurosteroids in amygdaloid tissue can modify the development of seizures. The chemical structures of ginsenosides not only have some principal differences from well-known antiepileptical drugs but the Plant Pharmacology gives us unique possibility to develop new class of antiepileptic drugs and to improve its biological activity.

  • PDF

Astudy on the Anticancer Activies of Lipid Soluble Ginseng Extract and Ginseng Sapongin DErivatives Against Some Cancer Cells (인삼의 지용성 성분과 사포닌 유도체의 항암작용 연구)

  • 항우익;오수경
    • Journal of Ginseng Research
    • /
    • v.8 no.2
    • /
    • pp.153-166
    • /
    • 1984
  • The anticancer activities of petroleum ether extract of Panax ginseng root(crude GX) and its partially purified fraction from silicic acid column chromatography (7:3 GX) were studied with Sarcoma 180(S-180) or Walker carcinosarcoma 256 (Walker 256) in vivo and with L1210 leukemic lympocyte in vitro. Potential cytotoxic activities of the crude GX and against L1210 cells were compared with those of 5-Fluorouracil (5-FU) and saponin derivatives (Panax-diol, Panax-triol, Diol saponin, Triol saponin) in vitro. In order to observe the physiological effects of the crude GX and 7:3 GX on the animals with cancer, hemoglobin(Hb), red blood cell(R.B.C) and white blood cell after treatment with each GX in comparison with corresponding control groups, respectively. The anticancer effects of the crude GX and 7:3 GX were estimated by measuring the survival time of S-180 bearing mice after treatment with them. The experimental results obtained are summarized as follows; 1. The one unit of cytotoxic activity against L1210 cells was equivalent to 2.54$\mu\textrm{g}$ and 0.88$\mu\textrm{g}$of the crude GX and 7:3 GX per ml of culture medium, respectively. 2. The cytotoxic activities of Panax-diol, Panax=triol, Diol saponin and triol saponin against L1210 cells were not detected. 3. The anticancer activities of 5-FU against L1210, S-180 and Walker 256 were very effective in vivo and vitro tests. 4. The significantly increased W.B.C values of mice after inoculation with S-180 cells were reduced to normal range by the crude GX treatment. 5. The significantly decreased Hb values of rats after inoculation with Walker 256 were recovered to normal range by oral administration of the crude GX. 6. The survival times of mice inoculated with S-180 cells were extended about 1.5 to 2 times by the 7:3 GX treatment compared with their control group.

  • PDF

Anti-wrinkle Effect by Ginsenoside Rg3 Derived from Ginseng (인삼유래 Ginsenoside Rg3에 의한 항-주름 효과)

  • 김성우;정지헌;조병기
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.221-225
    • /
    • 2004
  • The root of Panax ginseng C. A. Meyer has been used as a traditional anti-aging and anti-wrinkle agent in the Orient. However, it is still unknown which component of ginseng is effective at suppressing wrinkle formation. Recently at least twenty ginsenosides regarded as the main active ingredients of ginseng have been isolated. Among them, we examined the effect of ginsenoside Rg3 on dermal ECM metabolism to elucidate the mechanism of anti-wrinkle by ginseng. In our study, to investigate the anti-wrinkle effect of the ginsenoside Rg3, ECM component and growth factor in dennis were evaluated by ELISA assay. Ginsenoside Rg3 was found to stimulate type I procollagen and fibronectin (FN) biosynthesis in a dose-dependent manner in normal human fibroblast culture (p < 0.05, n =3), and dose-dependently enhance TGF- ${\beta}$1 level (p < 0.05, n =3). In RT-PCR analysis mRNA level of c-Jun, a member of AP-1 transcription factor, was reduced by ginsenoside Rg3 in normal human fibroblast culture. These results indicate that ginsenoside Rg3 stimulates type I collagen and FN synthesis through the changes of TGF - ${\beta}$1 and AP-1 expression in fibroblasts.

History of Disease Control of Korean Ginseng over the Past 50 Years (과거 50년간 고려인삼 병 방제 변천사)

  • Dae-Hui Cho
    • Journal of Ginseng Culture
    • /
    • v.6
    • /
    • pp.51-79
    • /
    • 2024
  • In the 1970s and 1980s, during the nascent phase of ginseng disease research, efforts concentrated on isolating and identifying pathogens. Subsequently, their physiological ecology and pathogenesis characteristics were scrutinized. This led to the establishment of a comprehensive control approach for safeguarding major aerial part diseases like Alternaria blight, anthracnose, and Phytophthora blight, along with underground part diseases such as Rhizoctonia seedling damping-off, Pythium seedling damping-off, and Sclerotinia white rot. In the 1980s, the sunshade was changed from traditional rice straw to polyethylene (PE) net. From 1987 to 1989, focused research aimed at enhancing disease control methods. Notably, the introduction of a four-layer woven P.E. light-shading net minimized rainwater leakage, curbing Alternaria blight occurrence. Since 1990, identification of the bacterial soft stem rot pathogen facilitated the establishment of a flower stem removal method to mitigate outbreaks. Concurrently, efforts were directed towards identifying root rot pathogens causing continuous crop failure, employing soil fumigation and filling methods for sustainable crop land use. In 2000, adapting to rapid climate changes became imperative, prompting modifications and supplements to control methods. New approaches were devised, including a crop protection agent method for Alternaria stem blight triggered by excessive rainfall during sprouting and a control method for gray mold disease. A comprehensive plan to enhance control methods for Rhizoctonia seedling damping-off and Rhizoctonia damping-off was also devised. Over the past 50 years, the initial emphasis was on understanding the causes and control of ginseng diseases, followed by refining established control methods. Drawing on these findings, future ginseng cultivation and disease control methods should be innovatively developed to proactively address evolving factors such as climate fluctuations, diminishing cultivation areas, escalating labor costs, and heightened consumer safety awareness.

Effects of Beneficial Microorganisms and Mycorrhizal Fungus Colonized Rhizoplane on the Suppression of Root Rot Pathogen, Fusarium solani (근면 정착 유용 미생물과 균근균이 근부병원균, Fusarium solani의 발병억제에 미치는 영향)

  • Han, Ki-Don;Lee, Sang-Sun;Kim, Sung-Ho;Lee, Min-Woong
    • The Korean Journal of Mycology
    • /
    • v.24 no.1 s.76
    • /
    • pp.38-48
    • /
    • 1996
  • The survival or colonization of beneficial organsisms and suppression of root rot of ginseng (Panax ginseng) by two distinct bacteria, Pseudomonas cepacia, Bacillus cereus and three mycorrhiza in pot soil were investigated and compared with uninoculated root. In separate inoculation, colonization of roots by P. cepacia was maintained at 6.25 (log cfu/g root) during growth for 10 days under pot culture conditions comparing to $5.62{\sim}6.19$ by mixed treatment with other organisms. Colonizations of P. cepacia were gradually decreased from 6.25 (log cfu/g root) in 10 days growth to 3.01 (log cfu/g root) in 270 days incubation period. This reduction was also investgated in combination treatments by B. cereus or F. solani. The numbers of Fusarium spp. were colonized high number in rhizosphere soil from 3.33 to 3.67 (log cfu/g root) in control within $10{\sim}60$days after treatment of pathogen F. solani, but it's numbers were markedly decreased in 270 days cultivation of plant from 3.33 to 1.02 (log cfu/g root) after treatment. In treatment of beneficial strains of P. cepacia and B. cereus, P. cepacia significantly suppressed the development of root rot from 4.3 in control to 1.2 in treatment, whereas B. cereus alone had no effect on the rate of disease suppression. The disease index $(1.8{\sim}2.3)$ in combination of two bacteria was reduced in plants inoculated with both P. cepacia and B. cereus comparing to the index (4.3) of control. As an effect of inoculation with mycorrhiza on disease suppression, suppression of root rot by F. solani was reduced to $1.2{\sim}1.6$ in disease index in treatment of Glomus albidum and Acaulospora longular comparing to 4.3 of control. In the treatment of bacterial strain P. cepacia and mycorrhizal fungus Glomus albidum, the disease suppression was apparent to 1.2 and 1.2 comparing to 4.3 of control in disease index respectively.

  • PDF

Present Status and Prospects of in vitro Production of Secondary Metabolites from Plant sin China

  • Chen, Xian-Ya;Xu, Zhi-Hong
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.40-56
    • /
    • 1995
  • During the past two decades, China has seen her great progress in plant biotechnology. Since the Chinese market of herb medicine is huge, while the plant resources are shrinking, particular emphasis has been placed in plant tissue and cell cultures of medicinal plants, this includes fast propagation, protoplast isolation and regeneration, cell suspension cultures and large scale fermentation. To optimize culture conditions for producing secondary compounds in vitro, various media, additives and elicitors have been tested. Successful examples of large scale culture for the secondary metabolite biosynthesis are quite limited : Lithospermum ery throrhizon and Arnebia euchroma for shikonin derivatives, Panax ginseng, P. notoginseng, P. quinquefolium for saponins, and a few other medicinal plants. Recent development of genetic transformation systems of plant cells offered a new approach to in vitro production of secondary compounds. Hairy root induction and cultures, by using Ri-plasmid, have been reported from a number of medicinal plant species, such as Artemisia annua that produces little artemisinin in normal cultured cells, and from Glycyrrhiza uralensis. In the coming five years, Chinese scientists will continue their work on large scale cell cultures of a few of selected plant species, including Taxus spp. and A. annua, for the production of secondary metabolites with medicinal interests, one or two groups of scientists will be engaged in molecular cloning of the key enzymes in plant secondary metabolism.

  • PDF

Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease

  • Zheng, You-Kun;Miao, Cui-Ping;Chen, Hua-Hong;Huang, Fang-Fang;Xia, Yu-Mei;Chen, You-Wei;Zhao, Li-Xing
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.353-360
    • /
    • 2017
  • Background: Endophytic fungi play an important role in balancing the ecosystem and boosting host growth. In the present study, we investigated the endophytic fungal diversity of healthy Panax notoginseng and evaluated its potential antimicrobial activity against five major phytopathogens causing root-rot of P. notoginseng. Methods: A culture-dependent technique, combining morphological and molecular methods, was used to analyze endophytic fungal diversity. A double-layer agar technique was used to challenge the phytopathogens of P. notoginseng. Results: A total of 89 fungi were obtained from the roots, stems, leaves, and seeds of P. notoginseng, and 41 isolates representing different morphotypes were selected for taxonomic characterization. The fungal isolates belonged to Ascomycota (96.6%) and Zygomycota (3.4%). All isolates were classified to 23 genera and an unknown taxon belonging to Sordariomycetes. The number of isolates obtained from different tissues ranged from 12 to 42 for leaves and roots, respectively. The selected endophytic fungal isolates were challenged by the root-rot pathogens Alternaria panax, Fusarium oxysporum, Fusarium solani, Phoma herbarum, and Mycocentrospora acerina. Twenty-six of the 41 isolates (63.4%) exhibited activity against at least one of the pathogens tested. Conclusion: Our results suggested that P. notoginseng harbors diversified endophytic fungi that would provide a basis for the identification of new bioactive compounds, and for effective biocontrol of notoginseng root rot.

The Manchus and ginseng in the Qing period (만주족과 인삼)

  • Kim, Seonmin
    • Journal of Ginseng Culture
    • /
    • v.1
    • /
    • pp.11-27
    • /
    • 2019
  • The Jurchens, the ancestors of the Qing Manchus, had lived scattered in Manchuria and had made their living mostly on ginseng gathering and animal hunting. Their residential areas, rich with deep forest and numerous rivers, provided great habitation for all kinds of flora and fauna, but not so proper for agriculture. Based on their activities of foraging and hunting, the Jurchens developed a unique social organization that was later transformed into the Banner System, the most distinctive Qing military institution. By the sixteenth century, that the external trade brought considerable changes to Jurchen society. A huge amount of foreign silver, imported from Japan and South America to China, first invigorated commercial economy in China proper, and later caused a huge influence on Ming frontier regions, including Manchuria. In the late sixteenth century when the tradition of foraging and hunting encountered with silver economy, the Jurchen tribes became unified after years of competition and transformed themselves into the Manchus to build the Qing empire in 1636. In 1644 the Manchus succeeded in conquering the China Proper and moved into Beijing. Even after that, the Manchu imperial court never forgot the value of Manchurii ginseng; instead, they paid great efforts to monopolize this profitable root. Until the late seventeenth century, the Qing court used the Banner System to manage Manchurian ginseng. The banner soldiers stationed in Manchuria checked unauthorized civilian entrances in this frontier and protected its ginseng producing mountains from the Han Chinese people. All the process of ginseng gathering was managed by the institutions under the direct control of the imperial court, such as the Imperial Household Department, the Butha Ula Office, and the Three Upper Banner in Shengjing. Banner soldiers were dispatched to the given mountains, collect the given amount of ginseng, and send them to the imperial court in Beijing. The state monopoly of ginseng was maintained throughout the eighteenth and nineteenth centuries under the principle that Manchuria and its natural resources should be guarded from civilian encroachment. At the same time, Manchurian ginseng was considered as an important source of state revenue. The imperial court and financial bureau wanted to collect ginseng as much as they needed. By the late seventeenth century as the ginseng management by the banner soldiers failed in securing the ginseng tax, the Qing court began to invite civil merchants to ginseng business. During the eighteenth century the Qing ginseng policy became more dependent on civil merchants, both their money and management. In 1853 the Qing finally ended the ginseng monopoly, but it was before the early eighteenth century that wealthy merchants hired ginseng gatherers and paid ginseng tax to the state. The Qing monopoly of ginseng was in fact maintained by the active participation of civil merchants in the ginseng business.

Diversity, distribution, and antagonistic activities of rhizobacteria of Panax notoginseng

  • Fan, Ze-Yan;Miao, Cui-Ping;Qiao, Xin-Guo;Zheng, You-Kun;Chen, Hua-Hong;Chen, You-Wei;Xu, Li-Hua;Zhao, Li-Xing;Guan, Hui-Lin
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.97-104
    • /
    • 2016
  • Background: Rhizobacteria play an important role in plant defense and could be promising sources of biocontrol agents. This study aimed to screen antagonistic bacteria and develop a biocontrol system for root rot complex of Panax notoginseng. Methods: Pure-culture methods were used to isolate bacteria from the rhizosphere soil of notoginseng plants. The identification of isolates was based on the analysis of 16S ribosomal RNA (rRNA) sequences. Results: A total of 279 bacteria were obtained from rhizosphere soils of healthy and root-rot notoginseng plants, and uncultivated soil. Among all the isolates, 88 showed antagonistic activity to at least one of three phytopathogenic fungi, Fusarium oxysporum, Fusarium solani, and Phoma herbarum mainly causing root rot disease of P. notoginseng. Based on the 16S rRNA sequencing, the antagonistic bacteria were characterized into four clusters, Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetesi. The genus Bacillus was the most frequently isolated, and Bacillus siamensis (Hs02), Bacillus atrophaeus (Hs09) showed strong antagonistic activity to the three pathogens. The distribution pattern differed in soil types, genera Achromobacter, Acidovorax, Brevibacterium, Brevundimonas, Flavimonas, and Streptomyces were only found in rhizosphere of healthy plants, while Delftia, Leclercia, Brevibacillus, Microbacterium, Pantoea, Rhizobium, and Stenotrophomonas only exist in soil of diseased plant, and Acinetobacter only exist in uncultivated soil. Conclusion: The results suggest that diverse bacteria exist in the P. notoginseng rhizosphere soil, with differences in community in the same field, and antagonistic isolates may be good potential biological control agent for the notoginseng root-rot diseases caused by F. oxysporum, Fusarium solani, and Panax herbarum.