• Title/Summary/Keyword: ginseng products

Search Result 666, Processing Time 0.029 seconds

The Characteristics and Antioxidant Activity of Non-enzymatic Browsing Products from Fresh Ginseng Bxtracts and Those with Arginine or Glucose (수삼추출물 및 Glucose 또는 Arginine첨가 추출물의 특성과 항산화작용에 대하여)

  • 최강주;김동훈
    • Journal of Ginseng Research
    • /
    • v.5 no.1
    • /
    • pp.8-23
    • /
    • 1981
  • Color is one of the most important quality factors of red ginseng (Hong-sam) which is processed from fresh ginseng (Panax ginseng C. A. Meyer). Therefore, a study of characteristics of browning mixtures of aqueous fresh ginseng extracts, factors which accelerate the browning of the aqueous extracts, and the antioxidant activity of the browning mixtures may contribute to the improvement of the color and other quality of red ginseng and other ginseng products such as ginseng extracts. In the present study, factors which affect the Maillard-type browning reaction of aqueous extracts of fresh ginseng roots were investigated firstly by adding various concentrations (0.001-0.5M) of arginine or glucose solutions, by varying the browning reaction temperatures and durations. Secondly, some characteristics such as brown color intensity, amounts of water-soluble and ether-soluble extracts, amounts of non-dialyzable materials, pH, viscosity, and reactivity with 2,2'- diphenyl -1 - picrylhydrazyl and antioxidant activity of the browning mixtures of the aqueous fresh ginseng extracts with small amounts of 0.1 M arginine, 0.1 M glucose, and distilled water at various browning temperatures and reaction time were studied. The results of the present study are as follows. 1. Color intensity (absorbance at 470 nm) of the browning mixtures was increased by adding various concentrations of arginine solution to the fresh ginseng extract, but the addition of the same amount of glucose solution did not increase the color intensity. 2 The amounts of water- or ether-soluble extracts, amounts of non-dialyzable materials were slightly greater in case of the browning mixtures of the fresh ginseng extract with 0.1M arginine solution than in case of the browning mixtures of the fresh ginseng extract with the same amount of 0.1 M glucose solution. In the process of the browning reaction, the pH of the browning mixtures of the fresh ginseng extract with 0.1 M arginine solution decreased slightly, while that of the browning mixtures with 0. 1 M glucose solution was almost constant. 3. The color intensity (absorbance at 470 nm) of the browning mixtures of the fresh ginseng extract with 0.1 M arginine or 0.1 M glucose solutions did not correlate well with the reducing power or the antioxidant power of the browning mixtures. The antioxidant activity of 90% ethanol extracts from the earlier stages of the browning mixtures of the fresh ginseng extract with the arginine solution was almost comparable to that of the 90% ethanol extracts from the later stages of the corresponding browning mixtures. The browning mixtures of only the fresh ginseng extract or of the fresh ginseng extract with the glucose solution showed considerable antioxidant activity, although both showed less brown color intensity than the fresh ginseng extract with he arginine solution.

  • PDF

Analysis of the Level of Microbial Contamination in the Manufacturing Company of Ginseng Products (인삼류(홍삼, 백삼) 제조·가공업체의 미생물 오염도 조사)

  • Shim, Won-Bo;Lee, Chae-Won;Choi, Young-Dong;Park, Sang-Gon;Jeong, Myeong-Jin;Kim, Jeong-Sook;Kim, Se-ri;Park, Ki-Hwan;Chung, Duck-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.2
    • /
    • pp.159-165
    • /
    • 2015
  • The aim of this study was to investigate microbiological contamination levels in the manufacturing company of ginseng products (white and red ginseng). Firstly, the contamination level for ginseng and each stage ginseng were 1.8~4.9 log CFU/g (total bacteria), 1.2~3.0 log CFU/g (coliform), 0.8~4.1 log CFU/g (fungi). However, only Bacillus cereus among pathogenic bacteria was detected from a few sample. The contamination of total bacteria tended to decrease as ginseng was being processing. Therefore, that of finished products (white and red ginseng) showed the lowest contamination level among each stage ginseng sample. That of fungi decreased steadily, although the contamination of fungi has tended to increase right after ginseng was steamed. Secondly, the contamination level for working tools and facilities were $1.7{\sim}4.7log\;CFU/cm^2$ (total bacteria), $0.4{\sim}4.0log\;CFU/cm^2$ (coliform), $0.9{\sim}4.2log\;CFU/cm^2$ (fungi). Especially, washing and peeling machines were higher contamination level. Finally, the contamination level of worker who washed and steamed ginseng was higher than worker who shaped, sorted and stored ginseng. Also, Staphylococus aureus was detected at 0.2~0.7 log CFU/hand on some wokers' hands. These results showed proper heating condition (temperature and time) and tidy manufacturing facility are the most important to avoid developing any microbiological problem of Ginseng Products.

Comparison of Ginsenosides and Acidic Polysaccharide Contents in Fresh Ginseng Cultivated in Different Seasons and Various Ages (수삼의 계절별 연근별 성분 변화)

  • Kang, Sung Ho;An, Beom Kyun;Hwang, Yu Jin;Yang, Byung Wook;Ko, Sung Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.4
    • /
    • pp.305-311
    • /
    • 2019
  • The purpose of this study was to examine the changes in seasonal bioactive components of 4 and 6 years old fresh ginseng (Panax ginseng) and to provide basic information on the development of functional food using fresh ginseng. Seasonal changes were investigated by ginseng saponin analysis using HPLC method and acidic polysaccharides by carbazole sulfuric acid method. Total saponins showed the highest content of fresh ginseng collected in May, followed by March, July, and September. Fresh ginseng collected in May showed 2.5 times (4 years old) - 3.0 times (6 years old) higher than fresh ginseng collected in September. Acidic polysaccharides showed high content of fresh ginseng collected in March and September, and low content of fresh ginseng collected in May and July. From these results, the fresh ginseng collected in May can develop high concentrations of saponin. On the other hand, fresh ginseng collected in March and September is thought to be able to develop high concentration products of acidic polysaccharides.

Status of Research on Ginseng Quality and its Problem (인삼의 품질 연구 현황 및 문제점)

  • Lee, Jong-Chul;Choi, Kwang-Tae;Kim, Yo-Tae;Mok, Seong-Kyun;Park, Hoon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.s01
    • /
    • pp.115-123
    • /
    • 1988
  • Ginseng has been used as a medicinal herb in the world for more than two thousand years. Inspection of the quality of ginseng was made since many hundred years ago. Ginseng quality has been graded by several methodes, based on saponin contents, number of ginsenosides, shape of root and tissue elaborateness. In present. ginseng products are usually evaluated by saponin contents and number of ginsenosides. On the other hand, fresh and manufactured ginseng roots such as red. white and semi-red ginseng, Taegeuk Sam, are mostly graded by root shape such as root development and skin (epidermis) color, and tissue elaborateness. which is a conventional grading method. However, the root shape grading method has a risk of overlooking real medicinal properties of ginseng. So. both the medicinal ingredients and the conventional grading method should be considered for the proper evaluation of ginseng quality. Therefore, for the establishment of better method in evaluating ginseng quality, the relationships of root shape and useful components are required to be studied.

  • PDF

Occurrence of Fungal Species in Dried Ginseng Products from Retail Market (시판 건조 인삼류(백삼, 홍삼)의 곰팡이 발생)

  • Choi, Jang Nam;Kim, So Soo;Baek, Seul Gi;Park, Jin Ju;Choi, Jung Hye;Jang, Ja Yeong;Kim, Jeom-Soon;Lee, Theresa
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.4
    • /
    • pp.277-284
    • /
    • 2022
  • To investigate the occurrence of fungi in dried ginseng products, we collected 24 white and 26 red ginseng samples from the retail market. Fungi were detected in 50% and 46% of white and red ginseng samples, respectively. The average level of fungal contamination was 0.5 and 0.2 log10 CFU/g in white and red ginseng, respectively. In white ginseng, Penicillium polonicum, P. chrysogenum, and Rhizopus microsporus dominated with each having an occurrence of 18.2%. In red ginseng, Aspergillus spp. was dominant with an occurrence of 87.6%, with A. chevalieri having the highest occurrence (50%). PCR screening for mycotoxigenic potential showed that the 13 isolates of 4 species (P. polonicum, P. chrysogenum, P. melanoconidium, and A. chevalieri) tested were negative for the citrinin biosynthetic gene. These results show that the samples tested in this study had low risk of mycotoxin contamination. However, there is a possibility of dried ginseng products, such as white and red ginseng, being contaminated with fungi.

Effect of Ginsenosides from Panax ginseng on Proliferation of Human Osteosarcoma Cell $U_2OS$

  • Deqiang Dou;Jie Ren;Yingjie Chen;Youwei Zhang;Xinsheng Yao
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.376-384
    • /
    • 2002
  • Object To find out which of the 27 ginsenosides isolated from Panax ginseng C.A. Mey that may inhibit the proliferation of human osteosaocoma cell line $U_2OS$. Methods Effects of each individual ginsenoside on the proliferation of $U_2OS$ cell were studied by determining the viability of cancer cells during culture with or without the presence of the test compound. DNA assay was determined by flow cytometry. Results Ginsonosides -Ro, $-Rh_l,\;-Rh_2,\;-F_1\;and\;-L_8$ at concentrations of 5 ,umol/L could obviously suppress the proliferation of $U_2OS$ cells while ginsenosides $-Rg_1,\;-F_3,$ -Rf, PPT and PT significantly inhibited the cancer cells. Flow cytometry revealed that ginsenosides $-Ro,-Rg_1-Rf,-F_1-Rh_2,PPT$ and PT induced cell cycle arrest at $G_0/G_1$ phase with obvious decrease of cell count at Sand $G_2+M$ phase, Moreover, ginsenosides $-Rf_1,-Rg_1,\;-F_1$ and PPT induced significantly high rates of cell death as compared with the control. Conclusion These data suggested that ginsenosides inhibited $U_2OS$ proliferation Via cell cycle arrest or induction of cell death.

  • PDF

Increase in apoptotic effect of Panax ginseng by microwave processing in human prostate cancer cells: in vitro and in vivo studies

  • Park, Jun Yeon;Choi, Pilju;Kim, Ho-kyong;Kang, Ki Sung;Ham, Jungyeob
    • Journal of Ginseng Research
    • /
    • v.40 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • Background: Ginseng, which is widely used in functional foods and as an herbal medicine, has been reported to reduce the proliferation of prostate cancer cells by mechanisms that are not yet fully understood. Methods: This study was designed to investigate the changes in ginsenoside content in ginseng after treatment with a microwave-irradiation thermal process and to verify the anticancer effects of the extracts. To confirm the anticancer effect of microwave-irradiated processed ginseng (MG), it was tested in three human prostate cancer cell lines (DU145, LNCaP, and PC-3 cells). Involvements of apoptosis and autophagy were assessed using Western blotting. Results: After microwave treatment, the content of ginsenosides Rg1, Re, Rb1, Rc, Rb2, and Rd in the extracts decreased, whereas the content of ginsenosides 20(S)-Rg3, 20(R)-Rg3, Rk1, and Rg5 increased. Antiproliferation results for the human cancer cell lines treated with ginseng extracts indicate that PC-3 cells treated with MG showed the highest activity with an half maximal inhibitory concentration of $48{\mu}g/mL$. We also showed that MG suppresses the growth of human prostate cancer cell xenografts in athymic nude mice as an in vivo model. This growth suppression by MG is associated with the inductions of cell death and autophagy. Conclusion: Therefore, heat processing by microwave irradiation is a useful method to enhance the anticancer effect of ginseng by increasing the content of ginsenosides Rg3, Rg5, and Rk1.

Influence of organic acids and heat treatment on ginsenoside conversion

  • Jang, Gwi Yeong;Kim, Min Young;Lee, Yoon Jeong;Li, Meishan;Shin, Yu Su;Lee, Junsoo;Jeong, Heon Sang
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.532-539
    • /
    • 2018
  • Background: Heat treatments are applied to ginseng products in order to improve physiological activities through the conversion of ginsenosides, which are key bioactive components. During heat treatment, organic acids can affect ginsenoside conversion. Therefore, the influence of organic acids during heat treatment should be considered. Methods: Raw ginseng, crude saponin, and ginsenoside $Rb_1$ standard with different organic acids were treated at $130^{\circ}C$, and the chemical components, including ginsenosides and organic acids, were analyzed. Results: The organic acid content in raw ginseng was 5.55%. Organic acids were not detected in crude saponin that was not subjected to heat treatment, whereas organic acids were found in crude saponin subjected to heat treatment. Major ginsenosides ($Rb_1$, Re, and $Rg_1$) in ginseng and crude saponin were converted to minor ginsenosides at $130^{\circ}C$; the ginsenoside $Rb_1$ standard was very stable in the absence of organic acids and was converted into minor ginsenosides in the presence of organic acids at high temperatures. Conclusion: The major factor affecting ginsenoside conversion was organic acids in ginseng. Therefore, the organic acid content as well as ginsenoside content and processing conditions should be considered important factors affecting the quality of ginseng products.

In situ analysis of chemical components induced by steaming between fresh ginseng, steamed ginseng, and red ginseng

  • In, Gyo;Ahn, Nam-Geun;Bae, Bong-Seok;Lee, Myoung-Woo;Park, Hee-Won;Jang, Kyoung Hwa;Cho, Byung-Goo;Han, Chang Kyun;Park, Chae Kyu;Kwak, Yi-Seong
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.361-369
    • /
    • 2017
  • Background: The chemical constituents of Panax ginseng are changed by processing methods such as steaming or sun drying. In the present study, the chemical change of Panax ginseng induced by steaming was monitored in situ. Methods: Samples were separated from the same ginseng root by incision during the steaming process, for in situ monitoring. Sampling was sequentially performed in three stages; FG (fresh ginseng) ${\rightarrow}$ SG (steamed ginseng) ${\rightarrow}$ RG (red ginseng) and 60 samples were prepared and freeze dried. The samples were then analyzed to determine 43 constituents among three stages of P. ginseng. Results: The results showed that six malonyl-ginsenoside (Rg1, Rb1, Rb3, Rc, Rd, Rb2) and 15 amino acids were decreased in concentration during the steaming process. In contrast, ginsenoside-Rh1, 20(S)-Rg2, 20(S, R)-Rg3 and Maillard reaction product such as AF (arginine-fructose), AFG (arginine-fructose-glucose), and maltol were newly generated or their concentrations were increased. Conclusion: This study elucidates the dynamic changes in the chemical components of P. ginseng when the steaming process was induced. These results are thought to be helpful for quality control and standardization of herbal drugs using P. ginseng and they also provide a scientific basis for pharmacological research of processed ginseng (Red ginseng).