• Title/Summary/Keyword: ginseng fruit

Search Result 89, Processing Time 0.023 seconds

Comparative phenolic compound profiles and antioxidative activity of the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) according to cultivation years

  • Chung, Ill-Min;Lim, Ju-Jin;Ahn, Mun-Seob;Jeong, Haet-Nim;An, Tae-Jin;Kim, Seung-Hyun
    • Journal of Ginseng Research
    • /
    • v.40 no.1
    • /
    • pp.68-75
    • /
    • 2016
  • Background: The study of phenolic compounds profiles and antioxidative activity in ginseng fruit, leaves, and roots with respect to cultivation years, and has been little reported to date. Hence, this study examined the phenolic compounds profiles and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free-radical-scavenging activities in the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) as a function of cultivation year. Methods: Profiling of 23 phenolic compounds in ginseng fruit, leaves, and roots was investigated using ultra-high performance liquid chromatography with the external calibration method. Antioxidative activity of ginseng fruit, leaves, and roots were evaluated using the method of DPPH free-radical-scavenging activity. Results: The total phenol content in ginseng fruit and leaves was higher than in ginseng roots (p < 0.05), and the phenol content in the ginseng samples was significantly correlated to the DPPH free-radical-scavenging activity ($r=0.928^{****}$). In particular, p-coumaric acid ($r=0.847^{****}$) and ferulic acid ($r=0.742^{****}$) greatly affected the DPPH activity. Among the 23 phenolic compounds studied, phenolic acids were more abundant in ginseng fruit, leaves, and roots than the flavonoids and other compounds (p < 0.05). In particular, chlorogenic acid, gentisic acid, p- and m-coumaric acid, and rutin were the major phenolic compounds in 3e6-yr-old ginseng fruit, leaves, and roots. Conclusion: This study provides basic information about the antioxidative activity and phenolic compounds profiles in fruit, leaves, and roots of Korean ginseng with cultivation years. This information is potentially useful to ginseng growers and industries involved in the production of high-quality and nutritional ginseng products.

Effect of Fruits Removal on the Photosynthesis and the Growth of Ginseng Plant (Punax ginseng C. A. MEYER) (적예가 인삼의 광합성 및 생육에 미치는 영향)

  • Yang, Deok-Jo;Lee, Seong-Sik;Kim, Yo-Tae
    • Journal of Ginseng Research
    • /
    • v.6 no.1
    • /
    • pp.1-10
    • /
    • 1982
  • This study was conducted to determine effect of fruits removal on the CO2 exchange rates (CER) and growth of ginseng plant. Fruit of 2, 4 age plant removed at 7, May. The results of these investigations are as follows. 1. The net photosynthetic rates of the ginseng bearing fruits increased to a considerably greater degree than that of the ginseng without fruit in each ages. 2. The total dry matter per plant in bearing fruit (40.24g) had produced more dry matter than that of non-fruiting plant (38.13g) , but the root 4.y matter in fruiting plant (26.2g) had produced less dry matter than that of non-fruiting plant (27.1g) in 4 age. 3. The ginseng plant in bearing fruit did not influence the dry matter of stem and leaf. 4. The maximum RGR of root (17, June) was slower than that of fruit (4, June) .

  • PDF

Morphological Characteristics of Inflorescence, Flowering Bud, Fruit and Leaf of Korean Ginseng (고려인삼의 화서, 화촉, 과실 및 엽의 형태학적 특성)

  • 최광태;신희석
    • Journal of Ginseng Research
    • /
    • v.6 no.1
    • /
    • pp.67-74
    • /
    • 1982
  • To clarify the morphological characteristics of Korean ginseng cultivated, the shapes and frequencies of Inflorescence, flowering bud, fruit, and leaf were investigated. The shapes of inflorescence, flowering bud and fruit, and leaf were divided into 6, 3, and 7 groups, respectively. The frequencies of these shapes were not significantly different according to the planting positions.

  • PDF

Ethylene Release of Panax ginseng in Relation to Plant Part and Various Conditions (고려인삼의 식물부위 및 여러 조건과 관련한 에틸렌가스 방출)

  • Park, Hoon;Lee, Myong-Gu;Lee, Chong-Wha
    • Journal of Ginseng Research
    • /
    • v.14 no.2
    • /
    • pp.122-125
    • /
    • 1990
  • Ethylene was released from leaf and fruit but root of Panax ginseng. Root callus showed higher ethylene release (ER) than fruit ER increased with leaf senesence. Fruit during ripening showed decreasing ER in the order of green stage, early stage of reddening and fully ripened stage. between leaves from the plant with fruits in different stages of ripening showed similar trend of fruit in ER but it was about 10 times higher in leaves than in fruits. Leaves of P. quinquefolius showed about 200 times higher ER than that of P ginseng on 22 July Fruits from the plant treated with ethephon showed higher ER after 109 days. Forty-five day-old seedlings grown with various growth regulators showed a significant decrease of stem length and significant increase of ER only in Uniconazole (0.1 ppm) and H-9 (0.0, 5 ppm) solution.

  • PDF

Quality Characteristics of Yakgwa Added with Ginseng Fruit, Leaf and Root (인삼열매, 잎 및 뿌리를 첨가한 약과의 품질특성)

  • Lee, Ka-Soon;Kim, Gwan-Hou;Seong, Bong-Jae;Kim, Sun-Ick;Han, Seung-Ho;Lee, Sox-Su;Song, Mi-Ran;Lee, Gyu-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.12
    • /
    • pp.1981-1987
    • /
    • 2013
  • In order to use the excellent features of saponin and phenolic compounds in the leaf and fruit of ginseng, ginseng fruit Yakgwa (GFY), ginseng leaf Yakgwa (GLY) and ginseng root Yakgwa (GRY) were made via adding the fruit, leaf and root powder in the process of making Yakgwa, and the properties were investigated. When making Yakgwa, GFY and GLY had superior expansion compared to GRY. 2.5-GFY (added 2.5% ginseng fruit powder) and 2.5-GLY (added 2.5% ginseng leaf powder) increased about 1.68 times and had better expansion than the control; however, when more amount of fruit and leaf were added, the expansion was decreased. The GFY and GLY showed green and red color, and the brightness and yellowness were decreased. Oil absorption during making Yakgwa showed to increase as the amount of fruit and leaf powder were increased regardless of the ginseng parts. Hardness of Yakgwa increased as the root additives were increased, and it decreased when leaf and fruit were added. The results of sensory evaluation on ginseng-based Yakgwa showed that oily taste was lowered as the amount of fruit and leaf additives were increased, which had increased the preference. On the overall preference of Yakgwa, 5.0-GFY, 2.5-GLY and 7.5-GRY was high, which contained 2.30 mg/g, 1.02 mg/g, and 0.91 mg/g of saponin, respectively.

Studies on Structure of Pericarp in Ginseng (Panax ginseng C.A. Meyer) Fruit (인삼과실의 과피구조에 관한 연구)

  • Yu, Seong-Cheol;Jeong, Byeong-Gap;Kim, U-Gap
    • Journal of Ginseng Research
    • /
    • v.13 no.1
    • /
    • pp.71-78
    • /
    • 1989
  • The structural changes in the pericarp of Panax ginseng fruit cells are studied during maturation periods. The pericarp can be divided into exocarp, mesocarp and endocarp. The exocarp consists of one layer of epidermal cells which is covered by a thin cuticle and hypodermal cells. A central vacuole and peripheral cytoplasm are observed in the exocarp and mesocarp. Also, irregular wall arrangement are observed during the differentiation. The endocarp is clearly marked off from the others by secondaw wall thickening and lignification. Secretory materials produced by the Golgi complex and rough endoplasmic reticulum vesicles appear to accumulated in the cell wall. These secretory materials are considered major components of the seed coat during the differentiation.

  • PDF

A Survey for Plant-Parasitic Nematodes Associated with Ginseng (Panax ginseng C.A. Meyer)

  • Chung, Ki-Chae;Park, So-Deuk;Khan, Zakaullah;Kim, Bok-Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.5
    • /
    • pp.355-359
    • /
    • 2004
  • A survey was conducted during $April{\sim}May$ 2004 to determine the occurrence and population density of plant-parasitic nematodes in ginseng (Panax ginseng C.A. Meyer) growing fields, in major ginseng growing regions of Chungbuk, Chungnam, Gyeongbuk and Kyongki provinces. The survey revealed presence of eleven species of plant-parasitic nematodes namely, Criconemoides morgensis, Ditylenchus destructor, Helicotylenchus dihystera, Meloidogyne incognita, M. hapla, Paratylencgus lepidus, Pratylenchus penetrans, Psilenchus hilarulus, Trichodorus similis, Tylenchorhynchus claytoni and Xiphinema americanum. Frequency and density of each species were highly variable. M. incognita and M. hapla were the predominant species, their infestation observed in 46.3 and 39.4% fields with an average density of $78{\sim}254\;and\;76{\sim}211$ nematodes per $300\;cm^3$ soil, respectively. Whereas, T. similis and X. americanum were rarely observed; only in 2.3 and 1.8% of surveyed fields and their density was $10{\sim}17\;and\;7{\sim}10$ individuals per $300\;cm^3$ soil, respectively. They are recorded herewith for the first time from ginseng fields of Korea. In nematode-infestated fields, stunted plant growth with chlorotic leaves, and wilted plants were observed in patches.

Phenological growth stages of Korean ginseng (Panax ginseng) according to the extended BBCH scale

  • Kim, Yun-Soo;Park, Chol-Soo;Lee, Dong-Yun;Lee, Joon-Soo;Lee, Seung-Hwan;In, Jun-Gyo;Hong, Tae-Kyun
    • Journal of Ginseng Research
    • /
    • v.45 no.4
    • /
    • pp.527-534
    • /
    • 2021
  • Background: Phenological studies are a prerequisite for accomplishing higher productivity and better crop quality in cultivated plants. However, there are no phenological studies on Panax ginseng that improve its production yield. This study aims to redefine the phenological growth stages of P. ginseng based on the existing Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie (BBCH) scale and proposes a disease control reference. Methods: This study was conducted at the Korea Ginseng Corporation Experiment Station in Gyeonggi province, South Korea. Phenological observations were performed once weekly or twice monthly, based on the developmental stages. The existing BBCH scale with a three-digit code was used to redefine and update P. ginseng's phenological growth codes. Results: The phenological description is divided into eight principal growth stages: three for vegetative growth (perennating bud, aerial shoot, and root development), four for reproductive growth (reproductive organ development, flowering, fruit development, and fruit maturation), and one for senescence according to the extended BBCH scale. A total of 58 secondary growth stages were described within the eight principal growth stages. Under each secondary growth stage, four mesostages are also taken into account, which contains the distinct patterns of the phenological characteristics in ginseng varieties and the process of transplanting seedlings. A practical management program for disease control was also proposed by using the BBCH code and the phenological data proposed in this work. Conclusion: The study introduces an extended BBCH scale for the phenological research of P. ginseng.

Effect of Gibberellin and Kinetin on Bud Dormancy Breaking and Growth of Korean Ginseng Root (Panax ginseng C.A. MEY.) (고려인삼의 근아휴면타파와 생육에 대한 Gibbrerllin과 Kinetin의 효과)

  • Park, Hoon;Kim, Kap-Sik;Bae, Hyo-Won
    • Journal of Ginseng Research
    • /
    • v.3 no.2
    • /
    • pp.105-112
    • /
    • 1979
  • Effect of gibberllin on the breaking of bud dormancy of root and growth of aerial parts were investigated under laboratory and field condition for the prolongation of shoot growth duration, shortening of fruit bearing age and the increase of root yield. Drop application of GA (0.5ml of 50ppm) on rhizome of one year old root broke bud dormancy better than by low temperature. Soaking for one hour of one year old roots which wintered in the field in GA (50-200ppm) greatly accelerated the emergence of new buds while kinetin was only effective at low level (50ppm). GA substantially increased stem length in early stage and petiole length later on while kinetin increased stem diameter. Under the field condition with polythylene film tunnel (PET) in early spring the soaking in GA (50ppm for 1 hour) of rhizome of 4 year old root with replanting and dropping GA (50ppm, 1ml) on rhizome without replanting brought earlier emergence (29days) in comparison with that in the usual field. PET alone caused 14 day-early emergence. GA increased the length of stem and petiole only in early stage and replanting decreased only petiole length in later stage. Soaking in GA with replanting caused the Pronounced decrease in peduncle length, percentage of (ruin set and dry weight of reproductive organ (fruits and peduncle). Dropping without replanting showed significant decrease only in dry weight of reproductive organ. Fruit maturing was 20 days earlier than in usual held with little difference between GA and PET. It is well expected that GA could be used for early emergence of bud, shortening of root dormancy period, thinning of fruit and higher root yield according to application amount and methods.

  • PDF