• Title/Summary/Keyword: ginseng complex

Search Result 149, Processing Time 0.021 seconds

The Comparative Study of IgG, IgM, and IgA in Laboratory Animal Administrated Red-ginseng, Using Immunoglobulin Productivity Assay (Immunoglobulin productivity assay를 이용(利用)한 홍삼투여(紅蔘投與) 실험동물(實驗動物)의 IgG, IgM, IgA 비교(比較) 연구(硏究))

  • Lee, Beom-Jun;So, Hyung-Jin;Kim, Jae-Wan;Lew, Jae-Hwan
    • The Journal of Internal Korean Medicine
    • /
    • v.28 no.4
    • /
    • pp.886-895
    • /
    • 2007
  • Objective : The immune system is a complex of systems, all of which work together to clear infection from the body. In Korea, red ginsenghas been one of the herbs most widely used to enhance the immune system for thousand of years. More recently, red ginseng has been reported to have many positive effects on the immune system. The purpose of this study was evaluate the effects of Korean red ginseng and Chinese red ginseng on IgG, IgM, and IgA, using immunoglobulin productivity assay. Methods : Male SD rats were separated into 3 groups. We administered Korean red ginseng (KRG) to one group and Chinese red ginseng (CRG) to another, with normal saline for the Control group consecutively and orally for 3 months. The dose of red ginseng was 500mg per day, as a powder with soluble water. Immunoglobulin levels from spleen cell were estimated by ELISA kit. Results : In immunoglobulin productivity assay (cell), the IgG level of the KRG group significantly increased but there was no significant difference in the IgG of the CRG group. The IgM level of the KRG group significantly increased stimulated with PWM. When it was unstimulated, the level of IgM in KRG and CRG increased together. The IgA level of the KRG group significantly increased when it was stimulated with PWM and unstimulated. Conclusion : According to the above results, oral administration of red ginseng for 3 months is considered useful for immunomodulatory effect, and Korean red ginseng may be superior to Chinese red ginseng in that effect.

  • PDF

Discovery of a new primer set for detection and quantification of Ilyonectria mors-panacis in soils for ginseng cultivation

  • Farh, Mohamed El-Agamy;Han, Jeong A.;Kim, Yeon-Ju;Kim, Jae Chun;Singh, Priyanka;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • Background: Korean ginseng is an important cash crop in Asian countries. However, plant yield is reduced by pathogens. Among the Ilyonectria radicicola-species complex, I. mors-panacis is responsible for root-rot and replant failure of ginseng in Asia. The development of new methods to reveal the existence of the pathogen before cultivation is started is essential. Therefore, a quantitative real-time polymerase chain reaction method was developed to detect and quantify the pathogen in ginseng soils. Methods: In this study, a species-specific histone H3 primer set was developed for the quantification of I. mors-panacis. The primer set was used on DNA from other microbes to evaluate its sensitivity and selectivity for I. mors-panacis DNA. Sterilized soil samples artificially infected with the pathogen at different concentrations were used to evaluate the ability of the primer set to detect the pathogen population in the soil DNA. Finally, the pathogen was quantified in many natural soil samples. Results: The designed primer set was found to be sensitive and selective for I. mors-panacis DNA. In artificially infected sterilized soil samples, using quantitative real-time polymerase chain reaction the estimated amount of template was positively correlated with the pathogen concentration in soil samples ($R^2=0.95$), disease severity index ($R^2=0.99$), and colony-forming units ($R^2=0.87$). In natural soils, the pathogen was recorded in most fields producing bad yields at a range of $5.82{\pm}2.35pg/g$ to $892.34{\pm}103.70pg/g$ of soil. Conclusion: According to these results, the proposed primer set is applicable for estimating soil quality before ginseng cultivation. This will contribute to disease management and crop protection in the future.

Inhibitory Effect of Fermented Red Ginseng against Passive Cutaneous Anaphylaxis Reaction and Scratching behaviors in Mice

  • Bae, Eun-Ah;Trinh, Hien-Trung;Lee, Young-Chul;Kim, Sang-Wook;Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • v.32 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • To evaluate the antiatopic effect of Korea red ginseng (RG, steamed root of Panax ginseng CA Meyer, Family Araliaceae) fermented by Bifidobacterium longum H-1 (FRG), its inhibitory effect on passive cutaneous anaphylaxis (PCA) reaction and itching in mice was measured. FRG and its ingredient saponin fraction (FSF) potently inhibited PCA reaction and scratching behaviors. FRG at a dose of 200 mg/kg and FSF at a dose of 50 mg/kg significantly inhibited the scratching frequency by 45% and 47%, respectively. FRG and FSF also inhibited the degranulation and protein expression of tumor-necrosis $factor-{\alpha}$ and interleukin-4 of RBL-2H3 cells induced by IgE-complex. However, polysaccharide fraction of FRG (FPF) weakly inhibited it, compared with FSF. The inhibitory effect of FRG against PCA reaction and scratching behaviors more potently inhibited than that of RG. Based on these findings, FRG can improve allergic skin disorders atopic dermatitis by the regulation of $TNF-{\alpha}$, and IL-4 produced by mast cells and basophils and its degranulation.

Comparison of network pharmacology based analysis on White Ginseng and Red Ginseng (인삼(人蔘)과 홍삼(紅蔘)의 네트워크 약리학적 분석 결과 비교)

  • Park, Sohyun;Lee, Byoungho;Jin, Myungho;Cho, Suin
    • Herbal Formula Science
    • /
    • v.28 no.3
    • /
    • pp.243-254
    • /
    • 2020
  • Objectives : Network pharmacology analysis is commonly used to investigate the synergies and potential mechanisms of multiple compounds by analyzing complex, multi-layered networks. We used TCMSP and BATMAN-TCM databases to compare results of network pharmacological analysis between White Ginseng(WG) and Red Ginseng(RG). Methods : WG and RG were compared with components and their target molecules using TCMSP database, and compound-target-pathway/disease networks were compared using BATMAN-TCM database. Results : Through TCMSP, 104 kinds of target molecules were derived from WG and 38 kinds were derived from RG. Using the BATMAN-TCM database, target pathways and diseases were screened, and more target pathways and diseases were screened compared to RG due to the high composition of WG ingredients. Analysis of component-target-pathway/disease network using network analysis tools provided by BATMAN-TCM showed that WG formed more networks than RG. Conclusions : Network pharmacology analysis can be effectively performed using various databases used in system biology research, and although the materials that have been reported in the past can be used efficiently for research on diseases related to targets, the results are unreliable if prior studies are focused on limited or narrow research areas.

Review of Studies on Ginseng Replanting Problems (인삼 연작장해 연구에 대한 고찰)

  • 이종철;김홍진;오승환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.115-120
    • /
    • 1989
  • Universal characteristics of ginseng replanting problems appeared to be decrease in root yields due to root rot and inhibition of root growth. Incitants of ginseng replanting problems have not been clearly elucidated, however, it appeared to be a complex phenomenon with several pathogenic soil microorganisms and environmental changes in the soil due to decomposition of ginseng debris such as rootlets and shoots. Decomposition of ginseng debris may cause direct or indirect damage to the root. The effect of conventional fungicide on the control of the problems has not been recognized. However, it has been suggested that treatment with soil fumigants may solve the problems. Meanwhile paddy-rice and ginseng rotation system appeared to be the best way of solving the problems so far.

  • PDF

Inhibitory Effects of Red Ginseng on Passive Cutaneous Anaphylaxis and Scratching Behavior Reactions in Mice

  • Trinh, Hien-Trung;Bae, Eun-Ah;Han, Myung-Joo;Shin, Yong-Wook;Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • v.31 no.3
    • /
    • pp.137-141
    • /
    • 2007
  • To evaluate the antiatopic effect of Korea Red Ginseng (RG, steamed root of Panax ginseng C.A. Meyer, Family Araliaceae), its inhibitory effect on passive cutaneous anaphylaxis reaction and itching in mice was measured. RG and its ingredient saponin fraction (SF) potently inhibited passive cutaneous anaphylaxis (PCA) reaction and scratching behaviors. RG at a dose of 100 mg/kg and SF at a dose of 50 mg/kg significantly inhibited the scratching frequency by 32% and 38%, respectively. RG and SF also inhibited the degranulation and protein expression of tumor necrosis factor $(TNF)-{\alpha}$ and interleukin (IL)-4 of RBL-2H3 cells induced by IgE-antign complex. However, polysaccharide fraction of RG did not inhibit it. Based on these findings, RG can improve allergic skin disorders atopic dermatitis and contact dermatitis by the regulation of $TNF-{\alpha}$, and IL-4 produced by mast cells and basophils and their membrane stabilization.

Ginseng Conservation Program in Russian Primorye:Genetic Structure of Wild and Cultivated Populations

  • Zhuravlev, Yu.N.;Koren, O.G.;Reunova, G.D.;Artyukova, E.V.;Kozyrenko, M.M.;Muzarok, T.I.;Kats, I.L.
    • Journal of Ginseng Research
    • /
    • v.28 no.1
    • /
    • pp.60-66
    • /
    • 2004
  • “The Regional complex long-term program of restoration (reintroduction) of Primoryes ginseng population up to 2005” elaborated by Primorye governor administration, Regional Committee of Natural Resources and Russian Academy of Sciences operates in Russian Primorye. The Institute of Biology and Soil Science (IBSS) provides the scientific implementation of the program including the genetic analysis of extant ginseng populations, plant reproduction and off-spring identification. According to our investigations, the genetic resource of P. ginseng in Primorye is represented by three populations of wild-growing ginseng and a few pritate plantations. The results obtained by RAPD allowed concluding that the resource is dispersed among the wild and cultivated ginseng sub-populations in such a way that each of sub-populations studied has to be represented as a stock material to maintain species genetic variability. The allozyme analyses also showed that the small sub-populations of wild ginseng are characterized by unique genetic diversity and, therefore, they all need to be represented in reintroduction centers. Additionally the allozyme analysis discovered that the Blue Mountain and Khasan populations possess the most genetic diversity. So, at least one more reproductive ginseng unit has to be created besides two already existing reintroduction centers representing the Sikhote-Alin and the Blue Mountain populations.

Ginseng Conservation Program in Russian Primorye: Genetic Structure of Natural and Cultivated Populations

  • Yu.N. Zhuravlev;O.G. Koren;G.D. Reunova;E.V Artyukova;M.M. Kozyrenko;T.I. Muzarok;I.L. Kats
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.509-521
    • /
    • 2002
  • 'The Regional complex long-term program of restoration (reintroduction) of Primoryes ginseng population up to 2005' elaborated by Primorye governor administration, Regional Committee of Natural Resources and Russian Academy of Sciences operates in Russian Primorye. The Institute of Biology and Soil Science (IBSS) provides the scientific implementation of this program including the genetic analysis of extant ginseng populations, plant reproduction and offspring identification. According to our investigations, the genetic resource of P. ginseng in Primorye is represented by three populations of wild-growing ginseng and a few private plantations. The results obtained by RAPD allowed concluding that this resource is dispersed among the wild and cultivated ginseng sub-populations in such a way that each of sub-populations studied has to be represented in living plant collection as a stock material to maintain species genetic variability. The allozyme analyses also showed that the small sub-populations of natural ginseng are characterized by unique genetic diversity and, therefore, they all need to be represented in reintroduction centers. Additionally the allozyme analysis discovered that the Blue Mountain and Khasan populations possess the most genetic diversity. So, at least one more reproductive ginseng unit has to be created besides two already existing reintroduction centers representing the Sikhote-Alin and the Blue Mountain populations.

  • PDF

Effects of Complex formula including Korea Red Ginseng (CKRG) on Brain Ischemia Induced by Occlusion of Middle Cerebral Artery (고려홍삼 복합방이 실험적 뇌경색에 미치는 영향)

  • Oh, Sang-Jin;Park, Il-Hyun;Kim, Sung-Hoon
    • The Journal of Korean Medicine
    • /
    • v.20 no.1 s.37
    • /
    • pp.161-171
    • /
    • 1999
  • This study was performed to investigate the effect of complex formula(CKRG) consisting of Panax ginseng Radix rubra Koreana. Ganoderma, Cinnamomi Cortex, Glycyrrhizae Radix and Laminariae Thallus on brain ischemia and injury such as KCN-induced brain injury, forced brain ischemia, pulmonary thrombosis. The results were summarized as follows: 1. CKRG extracts showed a decrease of the duration of KCN-induced coma and showcd an increase in life expectancy. 2. CKRG extracts showed a decrease of neurologic grade in hind limb but did not affect neurologic grades in fore limb. Also. CKRG extracts showed a significant decrease of brain ischemic area and edema in MCA occlusion, 3. CKRG extracts showed a protective effect on pulmonary thrombosis induced by collagen and epinephrine. These data suggested that CKRG extracts could be applied to the protection of brain ischemia and injury.

  • PDF

Ginsenoside Ro, an oleanolic saponin of Panax ginseng, exerts anti-inflammatory effect by direct inhibiting toll like receptor 4 signaling pathway

  • Xu, Hong-Lin;Chen, Guang-Hong;Wu, Yu-Ting;Xie, Ling-Peng;Tan, Zhang-Bin;Liu, Bin;Fan, Hui-Jie;Chen, Hong-Mei;Huang, Gui-Qiong;Liu, Min;Zhou, Ying-Chun
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.156-166
    • /
    • 2022
  • Background: Panax ginseng Meyer (P. ginseng), a herb distributed in Korea, China and Japan, exerts benefits on diverse inflammatory conditions. However, the underlying mechanism and active ingredients remains largely unclear. Herein, we aimed to explore the active ingredients of P. ginseng against inflammation and elucidate underlying mechanisms. Methods: Inflammation model was constructed by lipopolysaccharide (LPS) in C57BL/6 mice and RAW264.7 macrophages. Molecular docking, molecular dynamics, surface plasmon resonance imaging (SPRi) and immunofluorescence were utilized to predict active component. Results: P. ginseng significantly inhibited LPS-induced lung injury and the expression of proinflammatory factors, including TNF-α, IL-6 and IL-1β. Additionally, P. ginseng blocked fluorescencelabeled LPS (LPS488) binding to the membranes of RAW264.7 macrophages, the phosphorylation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs). Furthermore, molecular docking demonstrated that ginsenoside Ro (GRo) docked into the LPS binding site of toll like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD2) complex. Molecular dynamic simulations showed that the MD2-GRo binding conformation was stable. SPRi demonstrated an excellent interaction between TLR4/ MD2 complex and GRo (KD value of 1.16 × 10-9 M). GRo significantly inhibited LPS488 binding to cell membranes. Further studies showed that GRo markedly suppressed LPS-triggered lung injury, the transcription and secretion levels of TNF-α, IL-6 and IL-1β. Moreover, the phosphorylation of NF-κB and MAPKs as well as the p65 subunit nuclear translocation were inhibited by GRo dose-dependently. Conclusion: Our results suggest that GRo exerts anti-inflammation actions by direct inhibition of TLR4 signaling pathway.