• Title/Summary/Keyword: gfrp

Search Result 713, Processing Time 0.036 seconds

Development of New Detachable Connection for Glass Fiber Reinforced Polymer Considering of Short and Long-Term Behavior

  • Park, Don-U;Hwang, Kyung-Ju;Knippers, Jan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.3 s.25
    • /
    • pp.141-151
    • /
    • 2007
  • The appearance of many Glass Fiber Reinforced Plastic (GFRP) constructions look like ordinary steel construction, because GFRP has been imitated by the same way with the traditional steel's cross section as well as connection system. In terms of detachable connection, there was not enough appropriate option of GFRP connection, such as a traditional bolt connection for steel and wood structures. Most of all, from material characteristic of GFRP related to the deficient ductility, the shearstress principle of GFRP s not proper for the material property, which causes ineffective and not economic application of material. With this research problem, the innovative and detachable onnection system, which is more considered with appropriate material characteristic for FRP, is developed. Not only short time but also long time research with various connection variations is carried out.

  • PDF

The Evaluation of GFRP Pipe by NDT Methods (비파괴시험에 의한 GFRP Pipe의 평가)

  • Lee, J.S.;Cho, K.S.;Chang, H.K.;Lee, S.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.9 no.1
    • /
    • pp.48-55
    • /
    • 1989
  • It is desirable to develop the effective NDT techniques to evaluate the strength of composite structures. In this study several of acoustic NDT techniques were applied to investigate useful parameters for evaluating the filament wound GFRP structures and following results were obtained. 1. Propagation velocity of stress wave to axial direction in the filament wound GFRP pipe depends on the effective modulus along the propagation direction and source location was parcticable from the a measured velocities. 2. By the application of acoustic emission techniques to GFRP pipe during hydraulic test, it was proven to be possible to detect the damage initiating pressure which could be evaluated nondestructively through the measuring of stress wave energy factor(SWEF). 3. The final failure pressure of GFRP was greatly influenced in the presence of pass through defects, and void-like defects were more dangerous than the laminar type defects.

  • PDF

Development of a System of Temporary Arch Bridges by Using Snap-fit GFRP Composite Decks (조립식 복합소재 아치구조를 이용한 가교 시스템 개발)

  • Cho, Yong-Sang;Lee, Sung-Woo;Hong, Kee-Jeung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.276-281
    • /
    • 2008
  • Glass-fiber reinforced polyester(GFRP) composite material is a promising alternative to existing construction materials such as steel, concrete and wood. One of passible applications of GFRP composite material is to build temporary bridges by assembling GFRP composite decks. In this paper, we develop a system of temporary arch bridges that can be built by easy assembling of GFRP composite decks. For this purpose, several types of temporary arch bridges are suggested and verified by FE analysis.

  • PDF

Fabrication and Properties of Self-diagnosis GFRP for Low Loading (저하중용 자기진단 GFRP의 제조와 특성)

  • Shin, Soon-Gi;Lim, Hyun-Ju;Lee, Jun-Hee
    • Korean Journal of Materials Research
    • /
    • v.13 no.11
    • /
    • pp.732-736
    • /
    • 2003
  • A CP-GFRP(Carbon Powder-Glass Fiber Reinforced Plastic) sensor was fabricated for fracture detection. The electric resistance of the sensor was measured on condition of various composition of carbon powders and thickness of bundle of glass fibers. The resistance of the sensor was decreased as the increase of the content of carbon powders and the TEX of the glass fibers. In the case of loading on CP-GFRP, because inner crack was propagated, the part of percolation structures was disconnected. These observations show the following results. The conduction of CP-GFRP sensor is due to percolation structure of carbon powders and increase of resistance is due to expansion of cracks.

Tensile Properties and Testing Method for Glass Fiber Reinforced Polymer Reinforcing bar (GFRP Rebar의 인장특성 및 시험법에 관한 연구)

  • Park Ji-Sun;You Young-Chan;Park Young-Hwan;Choi Ki-Sun;You Young-Jun;Kim Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.172-175
    • /
    • 2004
  • This study is to investigate the tensile properties of glass fiber reinforced polymer(GFRP) reinforcing bars with various kinds of anchor systems experimentally. Three types of anchor systems were examined: resin sleeve anchor adopted by CSA Standard, metal overlay anchor by ASTM Standards and wedge anchor normally used in prestressing tendons. Also, three different types of GFRP bars with different surface deformations were tested in this study. All test procedures including specimens preparation, test apparatus and measuring devices were made according to the recommendations of CSA Standard S806-02. From the test results, it was found that the highest tensile strength of GFRP bar was developed by resin sleeve anchor, and tensile strength of GFRP bar with CSA anchor system is $10\%$ higher than that with ASTM anchor system in the case of sand-coated GFRP bar.

  • PDF

An experimental study on structural behaviour of the MMA double wide flanged GFRP pipe composite structures (II) (MMA 이중 플랜지를 갖는 GFRP 복합관 구조거동에 관한 실험 연구 (II))

  • Ji, Hyo-Seon;Mamdouh, El-Badry
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.50-61
    • /
    • 2015
  • This paper presents on the structural behavior of the the methyl methacrylate monomer (MMA) double wide flanged the glass fiber-reinforced polymer(GFRP) pipe composite structures for the manhole raise. The evaluation of structural performance on this composite structure was conducted by the axial load, fatigue load, and ultimate load test. The assessment indicates that the MMA double wide flanged GFRP pipe composite structures was confirmed safety, durability and reliability in result as expected. It was found that this composite structure was able to short working times to around 30-50% and construction costs to around 10-23% with compare other construction methods. Also, environmental pollution and civil complaints will be prevented because there will be no longer any noises, vibrations, dust, or construction wastes.

Dielectric Breakdown Characteristics of PPLP and GFRP for HTS DC Cable System (고온초전도 DC 케이블 시스템용 PPLP 및 GFRP의 절연 특성)

  • Kim, S.H.;Choi, J.H.;Kim, W.J.;Jang, H.M.;Lee, S.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.3
    • /
    • pp.5-9
    • /
    • 2011
  • DC high-temperature superconducting(HTS) cable system has attracted a great deal of interest from the view point of low loss, dense structure and large capacity. A HTS cable system is made of cable and termination. The insulating materials and insulation technology must be solved for the long life, reliability and compact of cable system. In this paper, we will report on the dielectric breakdown characteristics of insulating materials for HTS cable and termination. The AC, DC and lightning impulse breakdown strength of laminated polypropylene paper(PPLP) and glass fiber reinforced plastic(GFRP) have been measured under nitrogen pressures in the range of 0.l-0.4MPa. PPLP and GFRP are found to have a significantly higher DC breakdown strength. Also, DC surface flashover voltage of negative polarity is slightly higher than that of positive polarity in GFRP.

Retrofit of Rectangular RC Columns using GFRP (GFRP를 이용한 각형 RC 교각의 보강)

  • Lee, Young-Ho;Youm, Kwang-Soo;Jeong, Jin-Woo;Kwon, Tae-Gyu;Park, Ki-Tae;Hwang, Yoon-Koog
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.246-249
    • /
    • 2006
  • This paper presents experimental studies on investigating the seismic retrofit performance of reinforced concrete rectangular columns with poor lap-splice details using GFRP wrapping. Six columns have been tested. The GFRP retrofitted columns with same 7.5 mm thickness have two section shapes, i.e., rectangular and elliptical sections. The GFRP height was changed from 450 mm to 900 mm. The performance of GFRP retrofitted columns which have different shapes and height are verified.

  • PDF

Comtribution of surface deformations of GFRP rebar to bond to Concrete (GFRP 보강근 표면이형의 부착성능 기여도에 대한 고찰)

  • Moon, Do-Young;Sim, Jong-Sung;Oh, Hong-Seob;Sim, Jun-Gee;Kim, Jin-Gyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.19-20
    • /
    • 2009
  • Bond of deformed type of GFRP rebar, which has deformations resembles that of ordinary steel rebar, to concrete was investigated experimentally and numerically in this paper. Due to the lower stiffness and strength in shear, surface deformations do not fully works in bond with surrounding concrete. In this paper, the effective surface deformation height of GFRP rebar with ribs was determined based on experimental and numerical results.

  • PDF

Elastic Behavior Characteristics of GFRP Pipes Reinforced with Ribs (리브 보강 GFRP 관로의 탄성 좌굴거동 특성)

  • Seo Joo-Hyung;Han Taek-Hee;Yoon Ki-Yong;Kang Jin-Ook;Lee Myeoung-Sub;Kang Young-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.119-126
    • /
    • 2006
  • The elastic budding strength of a GFRP pipe reinforced with ribs was evaluated. The height and thickness of a rib and the spacing between two adjacent ribs were considered as factors affecting tlje budding strength of the pipe. And also, the ratio of the longitudinal stiffness and transverse stiffness was considered as the parameter affecting on the budding strength because GFRP is orthotropic material. Buckling strengths of various GFRP pipe models with different shapes and stiffness ratio were evaluated by FE analyses and a formula to estimate the elastic buckling strength of a rib-reinforced pipe made of orthotropic material was suggested from the regression with FE analysis results. Analysis results show that a rib-reinforced pipe has superior buckling strength to a general flat pipe and the suggested formula estimates accurate buckling strength of the rib-reinforced pipe.

  • PDF