• Title/Summary/Keyword: gfrp

Search Result 713, Processing Time 0.026 seconds

A Simplified Analysis Method of GFRP Composites Deck (GFRP 복합소재 바닥판의 간편해석법)

  • Son, Byung Jik;Ji, Hyo Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.359-368
    • /
    • 2013
  • This paper presents a simplified analysis method using the elastic equivalent modelling not using the global finite element modelling of deck for the basic design GFRP composites deck with cellular tubes or sandwich structural type. In order to verify the validation of the simplified method ANSYS software package is used and compared the results analyzed on the global finite element modelling and the elastic equivalent modelling. And the laboratory testing by 4-point bending is conducted to compare the results based on the simplified analysis method proposed in this paper. The comparison of the results based on the analysis and the testing are discussed. It is found that the presented simplified analysis is applicable to the use in the basic design GFRP composite deck.

Bond Slip Relationship between GFRP Plank and Cast-in-place High Strength Concrete (현장타설 고강도콘크리트와 유리섬유 FRP 판 사이의 부착슬립관계에 관한 연구)

  • Park, Chan-Young;Yoo, Seung-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2279-2286
    • /
    • 2015
  • Recently it has been actively studied that the use of hybrid GFRP-concrete structure with dual purpose of both a permanent forwork and main tensile reinforcement of GFRP plank. In applying general analysis and design technique to evaluate the performance of hybrid structures with cast-in-place high strength concrete and GFRP plank, it is essential that the characteristics of the bond slip model is identified. In this study a simplified bilinear bond slip model for hybrid structure with GFRP plank and cast-in-place high strength concrete is proposed. Maximum average bond stress of simple bond slip relationship that has been proposed in this study is 3.29MPa, initial slope is 35.66MPa/mm, the total slip is 0.23mm and interfacial fracture energy is 0.37kN/m.

Seismic performance of a fiber-reinforced plastic cable-stayed bridge

  • Hodhod, Osama A.;Khalifa, Magdi A.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.399-414
    • /
    • 1997
  • This paper presents an investigation into the seismic response characteristics of a proposed ligh-weight pedestrian cable-stayed bridge made entirely from Glass Fiber Reinforced Plastics(GFRP). The study employs three dimensional finite element models to study and compare the dynamic characteristics and the seismic response of the GFRP bridge to a conventional Steel-Concrete (SC) cable-stayed bridge alternative. The two bridges were subjected to three synthetic earthquakes that differ in the frequency content characteristics. The performance of the GFRP bridge was compared to that of the SC bridge by normalizing the live load and the seismic internal forces with respect to the dead load internal forces. The normalized seismically induced internal forces were compared to the normalized live load internal forces for each design alternative. The study shows that the design alternatives have different dynamic characteristics. The light GFRP alternative has more flexible deck motion in the lateral direction than the heavier SC alternative. While the SC alternative has more vertical deck modes than the GFRP alternative, it has less lateral deck modes than the GFRP alternative in the studied frequency range. The GFRP towers are more flexible in the lateral direction than the SC towers. The GFRP bridge tower attracted less normalized base shear force than the SC bridge towers. However, earthquakes, with peak acceleration of only 0.1 g, and with a variety of frequency content could induce high enough seismic internal forces at the tower bases of the GFRP cable-stayed bridge to govern the structural design of such bridge. Careful seismic analysis, design, and detailing of the tower connections are required to achieve satisfactory seismic performance of GFRP long span bridges.

The Experimental Evaluation of the Mixed Mode Delamination in Woven CFRP/GFRP Laminates under MMB Test (MMB시험에 의한 평직 CFRP/GFRP 적층판 혼합모드 층간분리의 실험적 평가)

  • Kwak, Jung-Hoon;Kang, Ji-Woong;Kwon, Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.14-18
    • /
    • 2013
  • Blades of horizontal axis are nowadays made of composite materials. Generally, composite materials satisfy design provides lower weight and good stiffness, while laminate composites have often damages as like the delamination and cracks at the interface of laminates. The box spar and tail parts of a blade are composed of the CFRP/GFRP hybrid laminate composites. However, delamination and the interfacial crack often occur in the interface of CFRP/GFRP hybrid laminate composites under the mixed mode fracture condition, especially mode I and mode II. Therefore, there is a need for the evaluation of the mixed mode fracture behavior during the delamination of CFRP/GFRP hybrid laminates. This study shows the experimental results for the delamination fracture toughness in CFRP/GFRP hybrid laminate composites. Fracture toughness experiments and estimation are performed by using DMMB(Dissimilar mixed mode bending) specimen. The materials used in the test are a commercial woven type CFRP(Carbon fiber reinforced plastic) prepreg(CF3327) and UD type GFRP(Glass fiber reinforced plastic) prepreg(HD224A). A CFRP/GFRP hybrid laminate composite is composed by the 10 plies CFRP and GFRP prepreg for DMMB. A thickness of CFRP and GFRP layer is 2.5mm and 3.0mm, respectively. Also the fulcrum location which is a loading parameter is changed from 80 to 100mm on the specimen of length 120mm because it defines the ratio of mode I to mode II. In this study, the effects of the fulcrum location are evaluated in the viewpoint of energy release rate in mode I and mode II contribution. The results show that the delamination crack initiates at higher displacement and lower load according to the increase of the fulcrum location ratio. And the variation of the energy release rate for mode I and II contributions for the mode mixity are shown.

A Fundamental Study for the Behavior of Lightweight Aggregate Concrete Slab Reinforced with GFRP Bar (GFRP bar를 휨보강근으로 사용한 경량골재콘크리트 슬래브의 거동에 관한 기초적 연구)

  • Jeon, Sang Hun;Shon, Byung Lak;Kim, Chung Ho;Jang, Heui Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.99-108
    • /
    • 2012
  • In this paper, to intend anticorrosive effect and weight reduction of conventional reinforced concrete slab, lightweight concrete slab reinforced with glass fiber reinforced polymer(GFRP) bar was considered and some basic behaviour of the slab were investigated. Measurement of splitting tensile strength and fracture energy of the concrete, a number of flexural experiment of the slab, numerical analysis using nonlinear finite element analysis, and comparison of the experimental results to the numerical analysis, were conducted. As a result, even the weight of the lightweight concrete slab could be reduced by about 28% than the normal concrete slab, failure load of the lightweight concrete slab was 36% smaller than the normal concrete slab. Such a thing can be attributed to the lower axial stiffness and lower bond strength of GFRP bar. In the numerical analysis, to consider decreasing property of bond strength of the lightweight concrete, interface element was used between the concrete and the GFRP bar elements and this method was shown to be a better way for the numerical analysis to approach the experimental results.

Color stability of laboratory glass-fiber-reinforced plastics for esthetic orthodontic wires

  • Inami, Toshihiro;Tanimoto, Yasuhiro;Minami, Naomi;Yamaguchi, Masaru;Kasai, Kazutaka
    • The korean journal of orthodontics
    • /
    • v.45 no.3
    • /
    • pp.130-135
    • /
    • 2015
  • Objective: In our previous study, glass-fiber-reinforced plastics (GFRPs) made from polycarbonate and glass fibers were prepared for esthetic orthodontic wires using pultrusion. These laboratory GFRP wires are more transparent than the commercially available nickel-titanium wire; however, an investigation of the color stability of GFRP during orthodontic treatment is needed. Accordingly, in the present study, the color stability of GFRP was assessed using colorimetry. Methods: Preparation of GFRP esthetic round wires (diameter: 0.45 mm [0.018 inch]) using pultrusion was described previously. Here, to investigate how the diameter of fiber reinforcement affects color stability, GFRPs were prepared by incorporating either $13-{\mu}m$ (GFRP-13) or $7-{\mu}m$ glass (GFRP-7) fibers. The color changes of GFRPs after 24 h, and following 1, 2, and 4 weeks of coffee immersion at $37^{\circ}C$, were measured by colorimetry. We evaluated the color stability of GFRPs by two evaluating units: the color difference (${\Delta}E^*$) and National Bureau of Standards (NBS). Results: After immersion, both GFRPs showed almost no visible color change. According to the colorimetry measurements, the ${\Delta}E^*$ values of GFRP-13 and GFRP-7 were 0.73-1.16, and 0.62-1.10, respectively. In accordance with NBS units, both GFRPs showed "slight" color changes. As a result, there were no significant differences in the ${\Delta}E^*$ values or NBS units for GFRP-13 or GFRP-7. Moreover, for both GFRPs, no significant differences were observed in any of the immersion periods. Conclusions: Our findings suggest that the GFRPs will maintain high color stability during orthodontic treatment, and are an attractive prospect as esthetic orthodontic wires.

An Experimental Study on the Mechanical Mounting between GFRP Door Impact Beam and Steel Brackets (GFRP 도어 임팩트 빔과 Steel 브래킷의 기계적 결합에 관한 실험적 연구)

  • Ha, Jung-Chan;Shin, Young-cheol;Baek, In-Seok;Lee, Seok-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.103-110
    • /
    • 2021
  • The mounting performance of the GFRP(Glass fiber Reinforced Plastic) beam and the mechanical mounting of the steel bracket was studied to be mounted as a GFRP impact beam on the side door of the passenger car. Moreover, an open-hole tensile test was performed to evaluate breakage tendency based on GFRP stacking conditions. Furthermore, the tightening strength of rivets and bolts was compared using the single lap-shear tension test for the GFRP stacking pattern. Additionally, the GFRP beam and bracket mounting features were designed; moreover, the prototype and bracket were assembled. Additionally, the bracket mounting bending test and the door assembly static bending test were performed to verify the stability of the bracket mounting. In the bracket fastening bending test, no breakage occurred in the connection part between the GFRP beam and the bracket, and it showed 67% (24.4 kN) improved performance compared to steel. In the static bending test of the door assembly, the initial average reaction force increased by 25% compared to the steel, and the performance of all FMVSS-214 regulations was satisfied. The replacement of GFRP impact beams resulted in a 30% weight reduction

Shear strengthening of reinforced concrete beams with minimum CFRP and GFRP strips using different wrapping technics without anchoring application

  • Aksoylu, Ceyhun
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.845-865
    • /
    • 2022
  • In this study, the performance of shear deficient reinforced concrete (RC) beams with rectangular cross-sections, which were externally bonded reinforced (EBR) with high strength CFRP and GFRP strips composite along shear spans, has been experimentally and analytically investigated under vertical load. In the study, the minimum CFRP and GFRP strips width over spacing were considered. The shear beam with turned end to a bending beam was investigated by applying different composite strips. Therefore various arising in each of strength, ductility, rigidity, and energy dissipation capacity were obtained. A total of 12 small-scaled experimental programs have been performed. Beam dimensions have been taken as 100×150×1000 mm. Four beams have been tested as unstrengthened samples. This paper focuses on the effect of minimum CFRP and GFRP strip width on behaviours of RC beams shear-strengthened with full-wrapping, U-wrapping, and U-wrapping+longitudinal bonding strips. Strengthened beams showed significant increments for flexural ductility, energy dissipation, and inelastic performance. The full wrapping strips applied against shear failure have increased the load-carrying capacity of samples 53%-63% interval rate. Although full wrapping is the best strengthening choice, the U-wrapping and U-wrapping+longitudinal strips of both CFRP and GFRP bonding increased the shear capacity by 53%~75% compared to the S2 sample. In terms of ductility, the best result has been obtained by the type of strengthening where the S5 beam was completely GFRP wrapped. The experimental results were also compared with the analytically given by ACI440.2R-17, TBEC-2019 and FIB-2001. Especially in U-wrapped beams, the estimation of FIB was determined to be 81%. The estimates of the other codes are far from meeting the experimental results; therefore, essential improvements should be applied to the codes, especially regarding CFRP and GFRP deformation and approaches for longitudinal strip connections. According to the test results, it is suggested that GFRP, which is at least as effective but cheaper than CFRP, may be preferred for strengthening applications.

An Experimental Study on the Fatigue Flexural Bonding Characteristic of Concrete Beam Reinforced with GFRP Rebar (GFRP Rebar로 보강된 콘크리트보의 피로 휨·부착성능에 관한 실험적 연구)

  • Oh, Hong Seob;Sim, Jong Sung;Kang, Tae-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.101-108
    • /
    • 2008
  • This study is to examine bond strength of beam reinforced with GFRP rebar under 4-point fatigue bending test by adopting BRITISH STANDARD. The variables were made to have bonding length of 5times(5db), and 15times(15db) of the nominal diameter of GFRP rebar and were done to analyze the relationship between the bonding strength and the slip. In the result of the test, pull-out failure was dominant in the 5db specimen, patterns of the pull-out failure and concrete shear failure appeared in the 15db specimen showed only concrete shear failure at the end of bonding length. Therefore, The strain development consist of three different stage : A rapid increases form 0 to about 10% of total fatigue life. A uniform increases form 10% to about 70%~90%. Then a rapid increases until failure, if failure takes place. It seems that stress level has not influence on the secant modules of elasticity. And also according to the outcome the existing strengthening method came out to be the most superiority in S-N graphs.

Evaluation of Tensile Material Properties and Confined Performance of GFRP Composite Due to Temperature Elevation (콘크리트 횡구속용 GFRP 보강재의 온도변화에 따른 인장 재료특성 및 구속성능 평가)

  • Jung, Woo-Young;Kim, Jin-Sup;Kwon, Min-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3562-3569
    • /
    • 2013
  • The performance of concrete structure decreases with change in time and the external environment. In order to reinforce the structure, the research about new material development and application of newly developed materials are widely conducted. In the case of composite FRP, it received good attention in the academia due to its high intensity-weight ratio, excellent corrosion resistency as well as good workability. When applying at the construction field, however, the utilization of FRP did not increase as much due to lack of reliability and design standard. Current study investigated the material characteristics during the temperature change at high temperature and the structural behavior from restraint effect for GFRP reinforcing materials. Two experimental variables were set in this study: GFRP reinforcements due to tensile properties of temperature and restraint compression effects. Three concrete specimen were selected for each set temperatures. For this reason, as a variable to experiment with the effects confined compression concrete members value and tensile properties with temperature reinforcement GFRP, experiment produced three pieces each for each set temperature, the concrete specimen, which is confined in the GFRP was selected each I did. For the temperature change during the experiment, the concrete specimen were mounted in order to expose to experimental high temperature for certain period of time. For compression performance evaluation, reinforcement effect from horizontal constraint of the fiber were measured using an Universal Material Testing Machine (UTM). Finally, this study revealed that the binding characteristics of GFRP materials from temperature change decreased. Also, this study showed that the maximum compression intensity decreased as the temperature increased up to $150^{\circ}C$ in the constraints ability of the GFRP reinforcements during the horizontal constraint of concrete.