• 제목/요약/키워드: gesture spotting

검색결과 10건 처리시간 0.027초

비디오 게임 인터페이스를 위한 인식 기반 제스처 분할 (Recognition-Based Gesture Spotting for Video Game Interface)

  • 한은정;강현;정기철
    • 한국멀티미디어학회논문지
    • /
    • 제8권9호
    • /
    • pp.1177-1186
    • /
    • 2005
  • 키보드나 조이스틱 대신 카메라를 통해 입력되는 사용자의 제스처를 이용하는 시각 기반 비디오 게임 인터페이스를 사용할 때 자연스러운 동작을 허용하기 위해서는, 연속 제스처를 인식할 수 있고 사용자의 의미없는 동작이 허용되어야 한다. 본 논문에서는 비디오 게임 인터페이스를 위한 인식과 분할을 결합한 제스처 인식 방법을 제안하며, 이는 주어진 연속 영상에서 의미있는 동작을 인식함과 동시에 의미없는 동작을 구별하는 방법이다. 제안된 방법을 사용자의 상체 제스처를 게임의 명령어로 사용하는 1인칭 액션 게임인 Quke II 게임에 적용한 결과, 연속 제스처에 대해 평균 $93.36\%$의 분할 결과로써 비디오 게임 인터페이스에서 유용한 성능을 낼 수 있음을 보였다.

  • PDF

Recognizing Hand Digit Gestures Using Stochastic Models

  • Sin, Bong-Kee
    • 한국멀티미디어학회논문지
    • /
    • 제11권6호
    • /
    • pp.807-815
    • /
    • 2008
  • A simple efficient method of spotting and recognizing hand gestures in video is presented using a network of hidden Markov models and dynamic programming search algorithm. The description starts from designing a set of isolated trajectory models which are stochastic and robust enough to characterize highly variable patterns like human motion, handwriting, and speech. Those models are interconnected to form a single big network termed a spotting network or a spotter that models a continuous stream of gestures and non-gestures as well. The inference over the model is based on dynamic programming. The proposed model is highly efficient and can readily be extended to a variety of recurrent pattern recognition tasks. The test result without any engineering has shown the potential for practical application. At the end of the paper we add some related experimental result that has been obtained using a different model - dynamic Bayesian network - which is also a type of stochastic model.

  • PDF

HMM을 이용한 알파벳 제스처 인식 (Alphabetical Gesture Recognition using HMM)

  • 윤호섭;소정;민병우
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.384-386
    • /
    • 1998
  • The use of hand gesture provides an attractive alternative to cumbersome interface devices for human-computer interaction(HCI). Many methods hand gesture recognition using visual analysis have been proposed such as syntactical analysis, neural network(NN), Hidden Markov Model(HMM) and so on. In our research, a HMMs is proposed for alphabetical hand gesture recognition. In the preprocessing stage, the proposed approach consists of three different procedures for hand localization, hand tracking and gesture spotting. The hand location procedure detects the candidated regions on the basis of skin-color and motion in an image by using a color histogram matching and time-varying edge difference techniques. The hand tracking algorithm finds the centroid of a moving hand region, connect those centroids, and thus, produces a trajectory. The spotting a feature database, the proposed approach use the mesh feature code for codebook of HMM. In our experiments, 1300 alphabetical and 1300 untrained gestures are used for training and testing, respectively. Those experimental results demonstrate that the proposed approach yields a higher and satisfying recognition rate for the images with different sizes, shapes and skew angles.

  • PDF

SVM을 이용한 동적 동작인식: 체감형 동화에 적용 (Dynamic Gesture Recognition using SVM and its Application to an Interactive Storybook)

  • 이경미
    • 한국콘텐츠학회논문지
    • /
    • 제13권4호
    • /
    • pp.64-72
    • /
    • 2013
  • 본 연구에서는 다차원의 데이터 인식에 유리한 SVM을 이용한 동적 동작인식 알고리즘을 제안한다. 우선, Kinect 비디오 프레임에서 동작의 시작과 끝을 찾아 의미있는 동작 프레임을 분할하고, 프레임 수를 동일하게 정규화시킨다. 정규화된 프레임에서 인체 모델에 기반한 인체 부위의 위치와 부위 사이의 관계를 이용한 동작 특징을 추출하여 동작인식을 수행한다. 동작인식기인 C-SVM는 각 동작에 대해 positive 데이터와 negative 데이터로 구성된 학습 데이터로 학습된다. 최종 동작 선정은 각 C-SVM의 결과값 중 가장 큰 값을 갖는 동작으로 한다. 제안하는 동작인식 알고리즘은 플래시 구연동화에서 더 나아가 유아가 능동적으로 구연동화에 참여할 수 있도록 고안된 체감형 동화 콘텐츠에 동작 인터페이스로 적용되었다.

임의 두 지점의 웹 카메라와 퍼지 가비지 모델을 이용한 사용자의 의미 있는 동작 검출 (Gesture Spotting by Web-Camera in Arbitrary Two Positions and Fuzzy Garbage Model)

  • 양승은
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제1권2호
    • /
    • pp.127-136
    • /
    • 2012
  • 각종 지능형 전자장비의 개발과 사용자 편의성 증대를 위해 영상기반의 손 동작 인식시스템이 다양하게 개발, 적용되고 있다. 손 동작 인식을 위해 손의 3차원 위치를 계산하고 오 동작 방지를 위해 명령 동작을 다른 유사동작과 구분하여 정확히 검출해야 한다. 본 논문에서는 설치가 쉽고 저렴한 비용으로 3차원 위치를 계산하는 시스템과 다양한 유사 동작 중 정의된 동작만을 검출해 내는 방법에 대해 다룬다. 팬/틸트 가능한 두 대의 USB 카메라와 표식을 이용하여 카메라를 임의의 위치에 두더라도 부착된 표식을 통해 자동으로 두 카메라간 상대위치를 구해 3차원 위치를 계산할 수 있다. 사용자의 명령 동작을 다른 유사 동작과 구분하기 위해 퍼지 가비지 모델을 개발 하였는데 퍼지 명령모델과 가비지 모델 두 가지를 이용하여 행동 인식에 대한 가변적 문턱 값을 구할 수 있다. 또한 두 단계의 적응 과정을 통해 각 사용자마다 다르게 나타나는 행동 특성 및 동일 사용자가 환경에 따라 다르게 나타내는 행동 특성을 반영 하여 성능을 개선한다. 개발된 시스템을 5명의 사용자를 대상으로 실험을 실시하였는데 명령 동작과 하나의 유사동작만 있을 경우 95% 이상, 다양한 유사동작이 혼재되어 있을 경우 85%이상의 인식률(명령 동작 검출)을 보였다.

Dynamic gesture recognition using a model-based temporal self-similarity and its application to taebo gesture recognition

  • Lee, Kyoung-Mi;Won, Hey-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권11호
    • /
    • pp.2824-2838
    • /
    • 2013
  • There has been a lot of attention paid recently to analyze dynamic human gestures that vary over time. Most attention to dynamic gestures concerns with spatio-temporal features, as compared to analyzing each frame of gestures separately. For accurate dynamic gesture recognition, motion feature extraction algorithms need to find representative features that uniquely identify time-varying gestures. This paper proposes a new feature-extraction algorithm using temporal self-similarity based on a hierarchical human model. Because a conventional temporal self-similarity method computes a whole movement among the continuous frames, the conventional temporal self-similarity method cannot recognize different gestures with the same amount of movement. The proposed model-based temporal self-similarity method groups body parts of a hierarchical model into several sets and calculates movements for each set. While recognition results can depend on how the sets are made, the best way to find optimal sets is to separate frequently used body parts from less-used body parts. Then, we apply a multiclass support vector machine whose optimization algorithm is based on structural support vector machines. In this paper, the effectiveness of the proposed feature extraction algorithm is demonstrated in an application for taebo gesture recognition. We show that the model-based temporal self-similarity method can overcome the shortcomings of the conventional temporal self-similarity method and the recognition results of the model-based method are superior to that of the conventional method.

연속된 수화 인식을 위한 자동화된 Coarticulation 검출 (Automatic Coarticulation Detection for Continuous Sign Language Recognition)

  • 양희덕;이성환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권1호
    • /
    • pp.82-91
    • /
    • 2009
  • 수화 적출은 연속된 손 동작에서 의미 있는 수화 단어를 검출 및 인식하는 것을 말한다. 수화는 손의 움직임과 모양의 변화가 다양하기 때문에 수화 문장에서 수화를 적출하는 것은 쉬운 문제가 아니다. 특히, 자연스러운 수화 문장에는 의미 있는 수화, 수화가 아닌 손동작이 무작위로 발생한다. 본 논문에서는 CRF(Conditional Random Field)에 기반한 적응적 임계치 모델을 제안한다. 제한된 모델은 수화 어휘집에 정의된 수화 손동작과 수화가 아닌 손동작을 구별하기 위한 적응적 임계치 역할을 수행한다. 또한, 수화 적출 및 인식의 성능 향상을 위해 손 모양 기반 수화 인증기, 짧은 수화 적출기, 부사인(subsign) 추론기를 제안된 시스템에 적용하였다. 실험 결과, 제안된 방법은 연속된 수화 동작 데이타에서 88%의 적출률, 사전에 적출된 수화 동작 데이타에서 94%의 인식률을 보였으며, 적응적 임계치 모델, 짧은 수화 적출기, 손 모양 기반 수화 인증기, 부사인 추론기를 사용하지 않은 CRF 모델은 연속된 수화 동작 데이터에서 74%의 적출률, 사전에 적출된 수화 동작 데이타에서 90%의 인식률을 보였다.

스마트 홈에서의 TV 제어 시스템을 위한 손 제스처 인식 방법 (A hand gesture recognition method for an intelligent smart home TV remote control system)

  • 김대환;조상호;천영재;김대진
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 가을 학술발표논문집 Vol.34 No.2 (C)
    • /
    • pp.516-520
    • /
    • 2007
  • This paper presents a intuitive, simple and easy smart home TV remote control system using the hand gesture recognition. Hand candidate regions are detected by cascading policy of the part of human anatomy on the disparity map image, Exact hand region is extracted by the graph-cuts algorithm using the skin color information. Hand postures are represented by shape features which are extracted by a simple shape extraction method. We use the forward spotting accumulative HMMs for a smart home TV remote control system. Experimental results show that the proposed system has a good recognition rate of 97.33 % for TV remote control in real-time.

  • PDF

연속적인 전신 제스처에서 강인한 행동 적출 및 인식 (Robust Gesture Spotting and Recognition in Continuous Full Body Gesture)

  • 박아연;신호근;이성환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.898-900
    • /
    • 2005
  • 강인한 행동 인식을 하기 위해서는 연속적인 전신 제스처 입력에서부터 의미 있는 부분만을 분할하는 기술이 필요하다. 하지만 의미 없는 행동을 정의하고, 모델링 하기 어렵기 때문에, 연속적인 행동에서 중요한 행동만을 분할한다는 것은 어려운 문제이다. 본 논문에서는 연속적인 전신 행동의 입력으로부터 의미있는 부분을 분할하고, 동시에 인식하는 방법을 제안한다. 의미 없는 행동을 제거하고, 의미 있는 행동만을 적출하기 위해 garbage 모델을 제안한다. 이 garbage 모델에 의해 의미 있는 부분만 HMM의 입력으로 사용되어지며, 학습되어진 HMM 중에서 가장 높은 확률 값을 가지는 모델을 선택하여. 행동으로 인식한다. 제안된 방법은 20명의 3D motion capture data와 Principal Component Analysis를 이용하여 생성된 80개의 행동 데이터를 이용하여 평가하였으며, 의미 있는 행동과, 의미 없는 행동을 포함하는 연속적인 제스처 입력열에 대해 $98.3\%$의 인식률과 $94.8\%$의 적출률을 얻었다.

  • PDF

퍼지 가비지 모델과 사용자 적응을 이용한 의미 있는 동작 검출 (Gesture Spotting using Fuzzy Garbage Model and User Adaptation)

  • 양승은;박광현;장효영;도준형;허성회;변증남
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.681-687
    • /
    • 2007
  • 첨단 기술의 발전과 함께 장애인 및 노약자의 삶의 질에 대한 관심이 증가함에 따라 사용자가 각종 시스템들을 보다 쉽게 제어할 수 있는 방법들이 많이 연구되고 있다. 그 중 하나로 정의된 손 움직임 동작을 인식하여 가전기기 혹은 환경 제어 시스템, 홈 로봇 등에 명령을 내리는 기술을 예로 들 수 있다. 하지만, 정의된 손 움직임이 일상생활에서 발생하는 동작과 비슷한 경우 오작동을 일으킬 가능성이 있으며, 이를 차단하기 위해 복잡한 동작을 명령어로 사용할 경우 사용자의 편의성을 떨어뜨린다. 본 논문에서는 이러한 문제를 해결하기 위해 비슷한 동작 중에서 특정 동작을 검출할 수 있는 퍼지 가비지 모델을 제안한다. 퍼지 가비지 모델이란 인식하고자 하는 특정 동작을 제외한 다른 유사 동작의 특성을 반영하여 구현한 퍼지 모델을 말한다. 따라서 사용자의 동작으로부터 특징 값을 구한 후 이를 특정 동작에 대한 퍼지 모델과 퍼지 가비지 모델에 각각 대입하여 얻은 결과를 비교해서 어떤 동작이 발생하였는지 결정한다. 또한 사용자의 행동 특성은 개인마다 다르게 나타나고 동일 사용자라 하더라도 경우에 따라 동작에 편차가 나타날 수 있기 때문에 특정 사용자에 대한 시스템의 적응이 필요하다. 이를 위해 다양한 경우를 고려하여 최적화된 값을 찾을 수 있는 진화 알고리즘을 이용하여 퍼지 모델 파라미터를 갱신하는 방법을 제안한다. 제안한 방법의 타당성을 검증하기 위해 5명의 사용자로부터 명령 동작과 의미 없는 유사 동작의 데이터를 획득하여 실험 결과를 보인다.

  • PDF