• Title/Summary/Keyword: germ tube

Search Result 56, Processing Time 0.033 seconds

Rapid Identification of Candida albicans Using Colorimetric Method

  • Kim, Shin Young;Park, Hun-Hee
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.45 no.4
    • /
    • pp.149-153
    • /
    • 2013
  • Candidiasis is a fungal infection of the most common causes; generally, opportunistic infections occur often in patients with weakened immune systems. Because of high rates in fungal infection patients and increasing frequency of being isolated from clinical materials, quickly identifying of Candida albicans is critical. By identifying 404 yeast cell strains of referred samples via API 20C kits, NGL and PRO tests and Germ tube (GT) test were conducted and compared. In the 3.0 McFarland yeast cells, 0.1% ${\rho}-nitrophenyl-N-acetyl-{\beta}-D-galactosaminide$ (NGL) and 0.04% ${\small{L}}$-proline ${\beta}$-naphtylamide (PRO) were each put in test tubes and incubated at $35^{\circ}C$ for 15, 30, 60 and 90 minutes. Afterwards, 1 drop of 2% NaOH was applied, and if the color turned yellow; it was positive for NGL test. Afterwards, 1% ${\rho}$-dimethylaminocinnamaldehyde was applied, and if the upper layer turned pink or red, it was positive for PRO test. NGL and PRO tests were conducted for all C. albicans and identified accurately within 30 minutes. In NGL, PRO test, false-positive, negative were not seen, whereas, GT test showed false-positive in 1 strain and false-negative in 3 strains. Therefore, sensitivity and specificity of NGL, PRO tests were 100% and 99.5%, respectively, and positive and negative predictive rate were 99.5% and 100%, respectively. However, GT test sensitivity and specificity were 98.5% and 99.5%, respectively, and positive and negative predictive rates were 99.5% and 98.5%, respectively. In conclusion, NGL, PRO tests are better than GT tests for sensitivity and specificity, therefore, these reliable tests will be useful in clinical laboratories.

  • PDF

Development of Candida albicans Biofilms Is Diminished by Paeonia lactiflora via Obstruction of Cell Adhesion and Cell Lysis

  • Lee, Heung-Shick;Kim, Younhee
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.482-490
    • /
    • 2018
  • Candida albicans infections are often problematic to treat owing to antifungal resistance, as such infections are mostly associated with biofilms. The ability of C. albicans to switch from a budding yeast to filamentous hyphae and to adhere to host cells or various surfaces supports biofilm formation. Previously, the ethanol extract from Paeonia lactiflora was reported to inhibit cell wall synthesis and cause depolarization and permeabilization of the cell membrane in C. albicans. In this study, the P. lactiflora extract was found to significantly reduce the initial stage of C. albicans biofilms from 12 clinical isolates by 38.4%. Thus, to assess the action mechanism, the effect of the P. lactiflora extract on the adhesion of C. albicans cells to polystyrene and germ tube formation was investigated using a microscopic analysis. The density of the adherent cells was diminished following incubation with the P. lactiflora extract in an acidic medium. Additionally, the P. lactiflora-treated C. albicans cells were mostly composed of less virulent pseudohyphae, and ruptured debris was found in the serum-containing medium. A quantitative real-time PCR analysis indicated that P. lactiflora downregulated the expression of C. albicans hypha-specific genes: ALS3 by 65% (p = 0.004), ECE1 by 34.9% (p = 0.001), HWP1 by 29.2% (p = 0.002), and SAP1 by 37.5% (p = 0.001), matching the microscopic analysis of the P. lactiflora action on biofilm formation. Therefore, the current findings demonstrate that the P. lactiflora ethanol extract is effective in inhibiting C. albicans biofilms in vitro, suggesting its therapeutic potential for the treatment of biofilm-associated infections.

Antagonistic Activity against Dirty Panicle Rice Fungal Pathogens and Plant Growth-Promoting Activity of Bacillus amyloliquefaciens BAS23

  • Saechow, Sukanya;Thammasittirong, Anon;Kittakoop, Prasat;Prachya, Surasak;Thammasittirong, Sutticha Na-Ranong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1527-1535
    • /
    • 2018
  • Bacterial strain BAS23 was isolated from rice field soil and identified as Bacillus amyloliquefaciens. Based on dual culture method results, the bacterium BAS23 exhibited potent in vitro inhibitory activity on mycelial growth against a broad range of dirty panicle fungal pathogens of rice (Curvularia lunata, Fusarium semitectum and Helminthosporium oryzae). Cell-free culture of BAS23 displayed a significant effect on germ tube elongation and mycelial growth. The highest dry weight reduction (%) values of C. lunata, H. oryzae and F. semitectum were 92.7%, 75.7%, and 68.9%, respectively. Analysis of electrospray ionization-mass spectrometry (ESI-MS) and $^1H$ nuclear magnetic resonance (NMR) spectroscopy revealed that the lipopeptides were iturin A with a C14 side chain (C14 iturinic acid), and a C15 side chain (C15 iturinic acid), which were produced by BAS23 when it was cultured in nutrient broth (NB) for 72 h at $30^{\circ}C$. BAS23, the efficient antagonistic bacterium, also possessed in vitro multiple traits for plant growth promotion and improved rice seedling growth. The results indicated that BAS23 represents a useful option either for biocontrol or as a plant growth-promoting agent.

Roles of Zinc-responsive Transcription Factor Csr1 in Filamentous Growth of the Pathogenic Yeast Candida albicans

  • Kim, Min-Jeong;Kil, Min-Kwang;Jung, Jong-Hwan;Kim, Jin-Mi
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.242-247
    • /
    • 2008
  • In the fungal pathogen Candida albicans, the yeast-to-hyphal transition occurs in response to a broad range of environmental stimuli and is considered to be a major virulence factor. To address whether the zinc homeostasis affects the growth or pathogenicity of C. albicans, we functionally characterized the zinc-finger protein Csr1 during filamentation. The deduced amino acid sequence of Csr1 showed a 49% similarity to the zinc-specific transcription factor, Zap1 of Saccharomyces cerevisiae. Sequential disruptions of CSR1 were carried out in diploid C. albicans. The csr1/csr1 mutant strain showed severe growth defects under zinc-limited growth conditions and the filamentation defect under hypha-inducing media. The colony morphology and the germ-tube formation were significantly affected by the csr1 mutation. The expression of the hyphae-specific gene HWP1 was also impaired in csr1/csr1 cells. The C. albicans homologs of ZRTl and ZRT2, which are zinc-transporter genes in S. cerevisiae, were isolated. High-copy number plasmids of these genes suppressed the filamentation defect of the csr1/csr1 mutant strain. We propose that the filamentation phenotype of C. albicans is closely associated with the zinc homeostasis in the cells and that Csr1 plays a critical role in this regulation.

Embryonic Development of Haploid Olive Flounder Paralichthys olivaceus (반수체 넙치(Paralichthys olivaceus)의 발생학적 특성 분석)

  • Jung, Hyo Sun;Kim, Youn Kyoung;Kim, Hyun Chul;Noh, Jae-Koo;Lee, Jeong-Ho;Kim, Dong Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.5
    • /
    • pp.696-703
    • /
    • 2015
  • We investigated the characteristics of embryonic and abnormal organ development in haploid olive flounder, Paralichthys olivaceus, by comparing egg development and histological sections in haploid and diploid individuals. After the mid-blastula transition, abnormal development was observed in haploid fish, including delayed epiboly and malformation of the germ ring and embryonic body. In haploid flounder, Kupffer’s vesicles are irregularly shaped and of variable size compared to diploids. The embryonic body of haploids was shorter and broader than that of diploids and the tail length and size were variable. Most haploid embryos failed to hatch and the few larvae that did, did not survive for more than 6 h. The histological analysis of haploid larvae revealed deformed development in diverse organs, including the eye, otic vesicles, notochord, and neural tube. These results may be related to an abnormality in the axial system of haploid larvae. This study confirmed that the abnormalities of haploid olive flounder were similar to the reported characteristics of haploid syndrome. The abnormalities are caused by delayed epiboly and involution and deformity of Kupffer’s vesicle during egg development.

Effect of Soil Moisture on the Pre-Penetration Activity of Pyricularia oryzae Cav. on Rice Leaf Epidermis (벼 잎 표피에서 도열병균의 침입전 행훈에 대한 토양수분의 효과)

  • Kim Choong Hoe
    • Korean Journal Plant Pathology
    • /
    • v.3 no.2
    • /
    • pp.100-107
    • /
    • 1987
  • Pre-pentration activity of Pyricularia oryzae Cav. from the stage of conidia germination to appressorium formation was examined on rice leaf epidermis under light and scanning electron microscopes to determine the causes· for differences in blast susceptibility between plants grown under three different soil moisture conditions in the greenhouse. No significant differences were found in the external shape of leaf epidermal cells including bulliform cells between plants grown under different soil moisture conditions. Growth and orientation of germ tube and morphology and size of appressorium of P. oryzae did not vary with soil moisture treatment. Site of appressorium formation was consistent over soil moisture treatment with the highest frequency of bulliform cell $(35\~48\%)$, followed by short cell $(19\~27\%)$, and long and guard cells $(13\~20\%)$. No appressorium was formed on trichome. This result suggests that the observed differences in blast susceptibility between plants grown under different soil moisture conditions were not due to the differences in the pre-pentration activity of P. oryzae on those plants.

  • PDF

Production of Polyclonal Antibody against $\alpha$-Fetoprotein and Polyclonal Antibody-Based Competitive Enzyme-Linked Immunosorbent Assay for $\alpha$-Fetoprotein (인간 $\alpha$-fetoprotein (AFP)에 대한 폴리클로날 항체의 생산 및 $\alpha$-fetoprotein 측정용 효소면역분석법 (competitive ELISA)의 개발)

  • Michung Yoon
    • Biomedical Science Letters
    • /
    • v.3 no.2
    • /
    • pp.115-123
    • /
    • 1997
  • $\alpha$-Fetoprotein (AFP) has been a useful marker in screening and/or monitoring patients with hepatocellular carcinoma, gonadal germ cell tumor, gastric carcinoma and neural tube defects. In the present study, it was attempted to produce anti-human AFP polyclonal antibodies and to develop a competitive enzyme-linked immunosorbent assay (ELISA) for the measurement of AFP in human plasma and amniotic fluid. AFP was isolated from amniotic fluid using an isolation procedure consisting of affinity chromatography and preparative polyacrylamide gel electrophoresis. The antibody directed against AFP was raised in rabbits. Double immunodiffusion and Western blotting methods showed that the antiserum was highly specific, reacting with only AFP-containing samples. Standard curve was obtained by using purified AFP and specific antiserum. The assay sensitivity was 5ng/ml and the working range was 5~l,000ng/ml. The within-assay and between-assay coefficient of variance (CV) was 4.5% and 8.5%, respectively. These results indicate that the assay is valuable for the measurement of AFP and found to be simple, reproducible, and accurate.

  • PDF

Biocontrol Activity of Bacillus amyloliquefaciens CNU114001 against Fungal Plant Diseases

  • Ji, Seung Hyun;Paul, Narayan Chandra;Deng, Jian Xin;Kim, Young Sook;Yun, Bong-Sik;Yu, Seung Hun
    • Mycobiology
    • /
    • v.41 no.4
    • /
    • pp.234-242
    • /
    • 2013
  • A total of 62 bacterial isolates were obtained from Gomsohang mud flat, Mohang mud flat, and Jeju Island, Republic of Korea. Among them, the isolate CNU114001 showed significant antagonistic activity against pathogenic fungi by dual culture method. The isolate CNU114001 was identified as Bacillus amyloliquefaciens by morphological observation and molecular data analysis, including 16SrDNA and gyraseA (gyrA) gene sequences. Antifungal substances of the isolate were extracted and purified by silica gel column chromatography, thin layer chromatography, and high performance liquid chromatography. The heat and UV ray stable compound was identified as iturin, a lipopeptide (LP). The isolate CNU114001 showed broad spectrum activity against 12 phytopathogenic fungi by dual culture method. The semi purified compound significantly inhibits the mycelial growth of pathogenic fungi (Alternaria panax, Botrytis cinera, Colletotrichum orbiculare, Penicillium digitatum, Pyricularia grisea and Sclerotinia sclerotiorum) at 200 ppm concentration. Spore germ tube elongation of Botrytis cinerea was inhibited by culture filtrate of the isolate. Crude antifungal substance showed antagonistic activity against cucumber scleotiorum rot in laboratory, and showed antagonistic activity against tomato gray mold, cucumber, and pumpkin powdery mildew in greenhouse condition.

Putative response regulator two-component gene, CaSKN7, regulate differentiation and virulence in Candida albicans

  • Lee, Jung-Shin;Minyoung Lim;Yim, Hyung-Soon;Kang, Sa-Ouk
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.50-50
    • /
    • 2003
  • We have identified and analysed a putative response regulator two-component gene (CaSKN7) from Candida albicans and its encoding protein (CaSkn7). CaSKN7 has an open reading frame of 1677bp. CaSKN7 encodes a 559 amino acid protein (CaSkn7) with an estimated molecular mass of 61.1 kDa. CaSKN7 is a homologue of a Saccharomyces cerevisiae SKN7 that is the regulator involved in the oxidative stress response. To study the role of CaSKN7, we constructed a CAI4-derived mutant strain carrying a homozygous deletion of the CaSKN7 gene. In the caskn7 disruptant cells, the formation of germ tube require shorter time than that in the congenic wild-type strain but the growth of mycelium delayed in liquid media. In contrast, the caskn7 disruptant cells attenuate the differentiation in solid media and the virulence in mouse model system. Expression level of hypha-specific and virulence genes - HYR1, ECE1, HWP1, and ALS1 - in the caskn7 disruptant cells increased as compared with that in the congenic wild-type strain in 10% serum YPD. Skn7 in 5. cerevisiae was found to bind the HSE element from the SSA promoter, Also, CaSkn7 contains heat shock factor DNA-binding domain and the promoters of these genes have HSE-like sties. Therefore these results show that CaSKN7 regulate the differentiation and virulence of C. albicans.

  • PDF

Biocontrol Activity of Volatile-Producing Bacillus megaterium and Pseudomonas protegens Against Aspergillus and Penicillium spp. Predominant in Stored Rice Grains: Study II

  • Mannaa, Mohamed;Kim, Ki Deok
    • Mycobiology
    • /
    • v.46 no.1
    • /
    • pp.52-63
    • /
    • 2018
  • In our previous studies, Bacillus megaterium KU143, Microbacterium testaceum KU313, and Pseudomonas protegens AS15 have been shown to be antagonistic to Aspergillus flavus in stored rice grains. In this study, the biocontrol activities of these strains were evaluated against Aspergillus candidus, Aspergillus fumigatus, Penicillium fellutanum, and Penicillium islandicum, which are predominant in stored rice grains. In vitro and in vivo antifungal activities of the bacterial strains were evaluated against the fungi on media and rice grains, respectively. The antifungal activities of the volatiles produced by the strains against fungal development and population were also tested using I-plates. In in vitro tests, the strains produced secondary metabolites capable of reducing conidial germination, germ-tube elongation, and mycelial growth of all the tested fungi. In in vivo tests, the strains significantly inhibited the fungal growth in rice grains. Additionally, in I-plate tests, strains KU143 and AS15 produced volatiles that significantly inhibited not only mycelial growth, sporulation, and conidial germination of the fungi on media but also fungal populations on rice grains. GC-MS analysis of the volatiles by strains KU143 and AS15 identified 12 and 17 compounds, respectively. Among these, the antifungal compound, 5-methyl-2-phenyl-1H-indole, was produced by strain KU143 and the antimicrobial compounds, 2-butyl 1-octanal, dimethyl disulfide, 2-isopropyl-5-methyl-1-heptanol, and 4-trifluoroacetoxyhexadecane, were produced by strain AS15. These results suggest that the tested strains producing extracellular metabolites and/or volatiles may have a broad spectrum of antifungal activities against the grain fungi. In particular, B. megaterium KU143 and P. protegens AS15 may be potential biocontrol agents against Aspergillus and Penicillium spp. during rice grain storage.