• Title/Summary/Keyword: germ cells

Search Result 490, Processing Time 0.026 seconds

Ultrastructural Study of Germ Cells and Reproductive Cycle in Female Neptunea arthritica cumingii

  • Han, Ji-Soo;Chung, Ee-Yung;Park, Gab-Man
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2005.07a
    • /
    • pp.52-52
    • /
    • 2005
  • Oogenesis, the gonadosomatic index (GSI), reproductive cycle and first sexual maturation of the female Neptunea (Barbitonia) arthritica cumingii have been investigated by light and electron microscope observations. In the early vitellogenic oocyte, the Golgi complex and mitochondria were involved in the formation of glycogen, lipid droplets and yolk granules. In late vitellogenic oocytes, the rough endoplasmic reticulum and multivesicular bodies were involved in the formation of proteid yolk granules in the cytoplasm. In particular, compared with the results of other gastropods, it is a different result that appearances of cortical granules at the cortical layer and microvilli on the vitelline envelope, which is associated with heterosynthetic vitellogenesis, were not observed in vitellogenic oocytes during oogenesis. A mature yolk granule was composed of three components: main body (central core), superficial layer, and the limiting menbrane, Monthly changes in the gonadosomatic index in females were studied in 2002 and 2003 were closely associated with ovarian developmental phases. Spawning occurred between May and August in 2002 and 2003 and the main spawning occurred between June and July when the seawater temperature rose to approximately 18${\sim}$23${\circ}$C. The female reproductive cycle can be classified into five successive stages: early activestage (Septmber to October), late active stage ( November to February), ripe stage (February to June), partially spawned stage (May to Aygust), and recovery stage (June to August).

  • PDF

Spermatogenesis and its fine structure of the seminiferous epithelium in the Jindo dog (진도견(珍島犬) 정세관상피(精細管上皮)의 정자발생(精子發生)과 미세구조(微細構造))

  • Kim, Yong-hwan;Park, Young-seok
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.1
    • /
    • pp.23-36
    • /
    • 1993
  • To investigate the cycle and relative frequences and the fine structure of seminiferous epithelia in mature Jindo dogs, histologic study was performed. The results obtained were summarized as follows; 1. Type A spermatogonia appeared approximately 1.6 times as many at stage II as compared to stage I while type In spermatogonia appeared small amount in stage III, IV and V. type B spermatogonia were found during the stage VI to VIII, though not detectable during stage I to V. The type B spermatogonia divided at stage VII to produce the preleptotene primary spermatocytes at stage VIII. The number of primary spermatocytes of the leptotene phase markedly increased during stage I to II, and the primary spermatocytes of the pachytene phase were shown the least in number at stage IV. The secondary spermatocytes could be seen only at stage IV. 2. The relative frequencies of each stage from stages I to VIII of the cycle of seminiferous epithelia were 31.6, 11.9, 10.0, 3.2, 8.2, 10.1, 11.7 and 13.2% respectively. 3. On electron microscopic observations, acrosomal vesicle of spermatids appeared larger though the bulk of germ cells were the morphologically same as those of the other animal species. Thread line structures light microscopically observed in the cytoplasm of Sertoli cell were the longitudinal orientation of mitochondria.

  • PDF

Primary Pulmonary Choriocarcinoma in the Lung - A case report - (폐에 발생한 원발성 융모막암종 - 1예 보고 -)

  • Jang, Hee-jin;Kim, Joo-Hyun;Kim, Young Tae;Kang, Chang-Hyun
    • Journal of Chest Surgery
    • /
    • v.42 no.1
    • /
    • pp.119-122
    • /
    • 2009
  • Choriocarcinoma is a germ-cell tumor that originates from syncytiotrophoblastic cells and this tumor secrets beta-human chorionic gonadotropin. It has been reported that extragonadal primary pulmonary choriocarcinoma is extremely rare. We report here on a 28-years-old woman who underwent right lower lobectomy for extragonadal nongestational primary pulmonary choriocarcinoma and she has survived for 2 years without recurrence.

Regulatory Mechanism of Spindle Movements during Oocyte Meiotic Division

  • Ai, Jun-Shu;Li, Mo;Schatten, Heide;Sun, Qing-Yuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.11
    • /
    • pp.1477-1486
    • /
    • 2009
  • Female germ cell meiotic divisions are typically asymmetric, giving rise to two daughter cells with different sizes. Spindle movements including spindle migration from the oocyte center to the cortex and spindle rotation from parallel to perpendicular (typically in the mouse) at the cortex are crucial for these asymmetric divisions and therefore are crucial for gamete production. Different regulatory mechanisms for spindle movements have been determined in different species and a wide variety of different molecular components and processes that are involved in spindle movements have also been identified in different species. Here, we review the current state of knowledge as well as our understanding of mechanisms for spindle movements in different systems with focus on three main aspects: microtubules (MT), microfilaments (MF) and molecules associated with cytoskeletal organization as well as molecules that are not directly related to the cytoskeleton. How they might interact or function independently during female meiotic divisions in different species is discussed in detail.

Early Gonadogenesis in Diploid and Triploid Mud Loach, Misgurnus mizolepis (2배체와 3배체 미꾸라지(Misgurnus mizolepis)의 원시생식소 형성과정)

  • Kim Bong-Seok;Kim Dong Soo
    • Journal of Aquaculture
    • /
    • v.8 no.3
    • /
    • pp.231-240
    • /
    • 1995
  • This study was conducted to examine early gonadogenesis by using a histological method for the appearance of primordial germ cells (PGCs), protrude of genital ridge, and formation of primitive gonads in diploid and triploid mud loach, Misgurnus mizolepis. The pattern of early gonadogenesis including appearance of PGCs, formation of genital ridge, and development of primitive gonad in both diploid and triploid were not different histologically. Characteristics of PGCs of triploid were also the same as those of diploid. However, gonadal length of diploid was significantly longer than that of triploid (P<0.05).

  • PDF

Reproductive Cycle of the Brown sole, Limanda herzensteini in Eastern Waters of Korea (동해안 참가자미, Limanda herzensteini의 생식주기)

  • 장윤정;이정용;장영진
    • Journal of Aquaculture
    • /
    • v.17 no.2
    • /
    • pp.128-132
    • /
    • 2004
  • Reproductive cycle of the brown sole, Limanda herzensteini was investigated by means of histological methods. The testis showed the presence of seminiferous tubule. The tubule consisted of many testicular cysts, each of which contained numerous germ cells - all at the same developmental stage. The ovary consisted of several ovarian lamellae and the oogonia originated from the inner surface of the ovarian lamella. Oocyte development was group-synchronous. Gonadosomatic index (GSI) of the male and female was the highest in January and March, respectively. Reproductive cycle could be classified into the growing (June-September), maturation (October-December), ripe and spent (January-March), and recovery and resting (April-May).

Enzymatic DNA oxidation: mechanisms and biological significance

  • Xu, Guo-Liang;Walsh, Colum P.
    • BMB Reports
    • /
    • v.47 no.11
    • /
    • pp.609-618
    • /
    • 2014
  • DNA methylation at cytosines (5mC) is a major epigenetic modification involved in the regulation of multiple biological processes in mammals. How methylation is reversed was until recently poorly understood. The family of dioxygenases commonly known as Ten-eleven translocation (Tet) proteins are responsible for the oxidation of 5mC into three new forms, 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Current models link Tet-mediated 5mC oxidation with active DNA demethylation. The higher oxidation products (5fC and 5caC) are recognized and excised by the DNA glycosylase TDG via the base excision repair pathway. Like DNA methyltransferases, Tet enzymes are important for embryonic development. We will examine the mechanism and biological significance of Tet-mediated 5mC oxidation in the context of pronuclear DNA demethylation in mouse early embryos. In contrast to its role in active demethylation in the germ cells and early embryo, a number of lines of evidence suggest that the intragenic 5hmC present in brain may act as a stable mark instead. This short review explores mechanistic aspects of TET oxidation activity, the impact Tet enzymes have on epigenome organization and their contribution to the regulation of early embryonic and neuronal development.

In vivo putative O-GlcNAcylation of human SCP1 and evidence for possible role of its N-terminal disordered structure

  • Koo, JaeHyung;Bahk, Young Yil
    • BMB Reports
    • /
    • v.47 no.10
    • /
    • pp.593-598
    • /
    • 2014
  • RNA polymerase II carboxyl-terminal domain (RNAPII CTD) phosphatases are responsible for the dephosphorylation of the C-terminal domain of the small subunit of RNAPII in eukaryotes. Recently, we demonstrated the identification of several interacting partners with human small CTD phosphatase1 (hSCP1) and the substrate specificity to delineate an appearance of the dephosphorylation catalyzed by SCP1. In this study, using the established cells for inducibly expressing hSCP1 proteins, we monitored the modification of ${\beta}$-O-linked N-acetylglucosamine (O-GlcNAc). O-GlcNAcylation is one of the most common post-translational modifications (PTMs). To gain insight into the PTM of hSCP1, we used the Western blot, immunoprecipitation, succinylayed wheat germ agglutinin-precipitation, liquid chromatography-mass spectrometry analyses, and site-directed mutagenesis and identified the $Ser^{41}$ residue of hSCP1 as the O-GlcNAc modification site. These results suggest that hSCP1 may be an O-GlcNAcylated protein in vivo, and its N-terminus may function a possible role in the PTM, providing a scaffold for binding the protein(s).

Formation and Structure of the Spermatozeugmata of Neoditrema ransonneti(Perciformes: Embiotocidae) (인상어, Neoditrema ransonneti의 정포 형성 및 구조)

  • 이정식;정선영;정의영
    • Development and Reproduction
    • /
    • v.5 no.2
    • /
    • pp.145-150
    • /
    • 2001
  • The testis of Neoditrema ransonneti is testicular tubule type, each testicular tubule consists of numerous testicular cysts which contain numerous germ cells showing the same developmental stage. During spermatogenesis, well developed rough endoplasmic reticula and the Golgi complex are observed in the cyst cell. Secretory activity of cyst cell was the highest in the late spermiogenesis. Sperm binding materials of spermatozeugmata are secreted by testicular cyst cell. One spermatozeugmata is produced by a testicular cyst during spermatogenesis. The capsular structure was not found in the spermatozeugmata discharged from male. According to observations under transmission electron microscopy approximately 1,500 to 1,700 of sperm tails were observed in the cross sectioned spermatozeugmata.

  • PDF

Post-transcriptional and post-translational regulation during mouse oocyte maturation

  • Kang, Min-Kook;Han, Seung-Jin
    • BMB Reports
    • /
    • v.44 no.3
    • /
    • pp.147-157
    • /
    • 2011
  • The meiotic process from the primordial stage to zygote in female germ cells is mainly adjusted by post-transcriptional regulation of pre-existing maternal mRNA and post-translational modification of proteins. Several key proteins such as the cell cycle regulator, Cdk1/cyclin B, are post-translationally modified for precise control of meiotic progression. The second messenger (cAMP), kinases (PKA, Akt, MAPK, Aurora A, CaMK II, etc), phosphatases (Cdc25, Cdc14), and other proteins (G-protein coupled receptor, phosphodiesterase) are directly or indirectly involved in this process. Many proteins, such as CPEB, maskin, eIF4E, eIF4G, 4E-BP, and 4E-T, post-transcriptionally regulate mRNA via binding to the cap structure at the 5' end of mRNA or its 3' untranslated region (UTR) to generate a closed-loop structure. The 3' UTR of the transcript is also implicated in post-transcriptional regulation through an association with proteins such as CPEB, CPSF, GLD-2, PARN, and Dazl to modulate poly(A) tail length. RNA interfering is a new regulatory mechanism of the amount of mRNA in the mouse oocyte. This review summarizes information about post-transcriptional and post-translational regulation during mouse oocyte meiotic maturation.