• 제목/요약/키워드: geothermal technology

검색결과 223건 처리시간 0.028초

신.재생에너지 활성화를 위한 제도의 설계와 남북한 신.재생에너지 협력 추진방안 - 전문가 설문에 나타난 신.재생에너지 현황 - (System Design for Activation of Renewable Energy and Cooperative Renewable Energy Plan Between South and North Korea -Based on the Survey of Renewable Energy Experts-)

  • 임소영;허은녕
    • 신재생에너지
    • /
    • 제1권3호
    • /
    • pp.24-34
    • /
    • 2005
  • Ministry of Commerce, Industry [MOCIE] has taken it into consideration to introduce a Renewable Portfolio Standard (RPS) that is a purchase obligation program as an alternative plan to the FIT. We conducted a survey of renewable energy companies and experts to ask their opinions about renewable energy policy, the introduction of the RPS, and the scheme for aid of North Korea with renewable energy. Korean renewable energy companies show an impartial opinion about a FIT and a RPS system overall, although they tend to have distinctive opinions by technology each other. With respect to eligible resources for a RPS, the industries want to extend the scope of it as broad as possible. In addition, experts prefer the multi-tiered and energy production based RPS to the sing1e-tiered and installed capacity based RPS. We also conducted a surrey to find the best renewable energy sources. Wind, Geothermal, Solar-thermal, and Photovoltaic were selected to have the best potential capacities to support North Korea by renewable energy experts. However, these energy resources also have several problems to overcome in the aid of North Korea, and thus, the plans for solving them and for giving efficient support to North Korea in the area of Renewable Energy are discussed.

  • PDF

냉매(R245fa)를 이용한 유기랭킨 사이클에 관한 연구 (A Study on the Organic Rankine Cycle Using R245fa)

  • 조수용;조종현;김진환
    • 한국유체기계학회 논문집
    • /
    • 제16권3호
    • /
    • pp.10-17
    • /
    • 2013
  • The organic Rankine cycle has been widely used to convert the renewable energy such as the solar energy, the geothermal energy, or the waste energy etc., to the electric power. Some previous studies focused to find what kind of refrigerant would be a best working fluid for the organic Rankine cycle. In this study, R245fa was chosen to the working fluid, and the cycle analysis was conducted for the output power of 30kW or less. In addition, properties (temperature, pressure, entropy, and enthalpy etc.) of the working fluid on the cycle were predicted when the turbine output power was controlled by adjusting the mass flowrate. The configuration of the turbine was a radial-type and the supersonic nozzles were applied as the stator. So, the turbine was operated in partial admission. The turbine efficiency and the optimum velocity ratio were considered in the cycle analysis for the low partial admission rate. The computed results show that the system efficiency is affected by the partial admission rate more than the temperature of the evaporator.

유기랭킨사이클 작동과 관련한 부품개선에 의한 사이클 효율변화에 대한 영향 (Effect on the Cycle Efficiency by Using Improved Parts for Operating the ORC)

  • 조수용;조종현
    • 한국유체기계학회 논문집
    • /
    • 제19권6호
    • /
    • pp.34-42
    • /
    • 2016
  • The organic Rankine cycle (ORC) has been used to convert thermal energy to mechanical energy or electricity. The available thermal energy could be waste heat, solar energy, geothermal energy, and so on. However, these kinds of thermal energies cannot be provided continuously. Hence, the ORC can be operated at the off-design point. In this case, the performance of the ORC could be worse because the components of the ORC system designed based on a design point can be mismatched with the output power obtained at the off-design point. In order to improve the performance at the off-design point, a few components were replaced including generator, bearing, load bank, shaft, pump and so on. Experiments were performed on the same facility without including other losses in the experiment. The experimental results were compared with the results obtained with the previous model, and they showed that the system efficiency of the ORC was greatly affected by the losses occurred on the components.

국내 해상풍력 발전단지 입지 분석 연구 (Study of the Spatial Location Analysis for Domestic Offshore Wind Farm)

  • 김동휘;이용준;류인호;서대림
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.504-511
    • /
    • 2010
  • After facing the fact such as fossil-fuel depletion, global warming, the Kyoto Protocol coming into force of mandatory reductions of carbon dioxide, the world is actively promoting the spread of the solar, wind, tidal, geothermal and other clean renewable energy technology development. Among them, wind power is the only alternative energy to secure a comparable price competition with fossil fuels because cheaper price power generation than other renewable energy when creating large-scale wind farm, thus wind power is the fastest growing industries in the world in the renewable energy field. Especially the offshore wind power is showing rapid growth as most of the wind power sector because of less changes of wind speed, no restrictions of land use, and large-scale development of offshore wind power. In this paper, the field of site selection and spatial location analysis techniques for development of large-scale offshore wind farm are discussed primarily. This paper shows overview of offshore wind power and establishment procedure for development of offshore wind farm.

  • PDF

강변여과수를 이용한 온실난방기술 개발 (Greenhouse Heating Technology Development by using Riverbank Filtration Water)

  • 문종필;이성현;권진경;강연구;유영선;이수장
    • 한국농공학회논문집
    • /
    • 제53권6호
    • /
    • pp.145-152
    • /
    • 2011
  • In order to heat greenhouse nearby river channel, riverbank filtration water source heat pump was developed for getting plenty of heat flux from geothermal energy. Recharging well, thermal storage tank with separating insulation plate and filtering tank for eliminating iron, manganese were mainly developed for making the coefficient of performance (COP) of heat pump higher. Heating system using riverbank filtration water source heat pump was installed at a paprika greenhouse in the Jinju region where a single fold of vinyl cover and 2 layers of horizontal thermal curtain were installed as a part of temperature keeping and heat insulation with a greenhouse area of 3,185 $m^2$. 320,000 kcal/h was supplied for performing a site application tests. A greenhouse heating test was performed from Feb. 1, 2011 to Apr. 30, 2011. As the result of that, COPh of the heat pump was measured in the range of 4.0~4.5, while COPS of the system was represented as 2.9~3.3. COP measured of the heat pump was very good and well responded to indoor heating temperature of the environment control system of a greenhouse.

공조시스템용 지열히트펌프의 실증평가에 관한 연구 (In-situ Performance Evaluation of a Ground Source Heat Pump for an Air Conditioning System)

  • 박윤철;박성구
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.66-72
    • /
    • 2008
  • In this study, the ground source heat pump was installed at a research center in Jeju Island to verify the performance of the system and to give an information for a economic feasibility. The performance test was conducted until the heat storage tank temperature reached at $5^{\circ}C$ from $50^{\circ}C$ in the cooling operation, and until the storage temperature goes up to $50^{\circ}C$ from $10^{\circ}C$ in the heating mode. As results, the system performance shows that $2.2{\sim}3.5$ for the cooling operation and $2.5{\sim}3.5$ for heating operation. It is found that the underground is good heat source for the heat pump with $3{\sim}10^{\circ}C$ variation range. The ground source heat pump could be connected one of air conditioning system without any problem in system performance. Based on the economic analysis, the initial cost for the ground source heat pump will be compensated after 4 years operation. If the system runs 20 years, approximately 300 million Won will be saved when the air conditioning system adapt the ground source heat pump based on Life Cycle Cost analysis.

빌딩 구조체 활용 지열원 열펌프 시스템의 냉난방성능 특성 (Heating and Cooling Performance Characteristics of Ground Source Heat Pump System Utilizing Building Structures as Heat Source and Sink)

  • 김남태;최종민;손병후;백성권;이동철;양희정
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.143.2-143.2
    • /
    • 2011
  • Energy foundations and other thermo-active ground structure, energy wells, energy slab, and pavement heating and cooling represent an innovative technology that contributes to environmental protection and provides substantial long-term cost savings and minimized maintenance. This paper focuses on earth-contact concrete elements that are already required for structural reasons, but which simultaneously work as heat exchangers. Pipes, energy slabs, filled with a heat carrier fluid are installed under conventional structural elements, forming the primary circuit of a geothermal energy system. The natural ground temperature is used as a heat source in winter and heat sink in summer season. The system represented very high heating and cooling performance due to the stability of EWT from energy slab. Maximum heat pump unit COP and system COP were 4.9 and 4.3.

  • PDF

열펌프의 고장감지 및 진단시스템 구축을 위한 실시간 정상상태 진단기법 개발 (Real-time steady state identification technology of a heat pump system to develop fault detection and diagnosis system)

  • 김민성;윤석호;김민수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.282-287
    • /
    • 2008
  • Identification of steady-state is the first step in developing a fault detection and diagnosis (FDD) system. In a complete FDD system, the steady-state detector will be included as a module in a self-learning algorithm which enables the working system's reference model to "tune" itself to its particular installation. In this study, a steady-state detector of a residential air conditioner based on moving windows was designed. Seven representing measurements were selected as key features for steady-state detection. The optimized moving window size and the feature thresholds was suggested through startup transient test and no-fault steady-state test. Performance of the steady-state detector was verified during indoor load change test. From the research, the general methodology to design a moving window steady-state detector was provided for vapor compression applications.

  • PDF

수직밀폐형 지중열교환기의 온도분포 특성 (The Characteristics of Thermal Diffusion With the Vertical-Closed Loop Type Geothermal Heat Exchanger)

  • 선종철;김병철;고영하
    • 한국태양에너지학회 논문집
    • /
    • 제33권1호
    • /
    • pp.57-65
    • /
    • 2013
  • The temperatures with the ground depth, the positions of circulation water in ground heat exchanger were measured and thermal diffusion characteristics with the distances of the direction normal to the borehole was analysed. The deeper the depth of ground, the less the influences of outdoor temperature, but below 10m of ground, there was no influences of ground temperature. When the depth of trench pipe was below the depth of 2m, there was no influence. In the ground of 10m when the distances between the pipe and the other places were above 0.5m, the variations of temperature were less than $1.6^{\circ}C$ and above 2.5m they were less than $0.1^{\circ}C$. When the distances of bore hole were above 5m, there were no. influences of the nearest ground heat exchanger.

Cascaded H-Bridge Five Level Inverter for Grid Connected PV System using PID Controller

  • Sivagamasundari, M.S.;Mary, P. Melba
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권4호
    • /
    • pp.451-462
    • /
    • 2016
  • Photovoltaic energy conversion becomes main focus of many researches due to its promising potential as source for future electricity and has many advantages than the other alternative energy sources like wind, solar, ocean, biomass, geothermal etc. In Photovoltaic power generation multilevel inverters play a vital role in power conversion. The three different topologies, diode-clamped (neutral-point clamped) inverter, capacitor-clamped (flying capacitor) inverter and cascaded h-bridge multilevel inverter are widely used in these multilevel inverters. Among the three topologies, cascaded h-bridge multilevel inverter is more suitable for photovoltaic applications since each pv array can act as a separate dc source for each h-bridge module. This paper presents a single phase Cascaded H-bridge five level inverter for grid-connected photovoltaic application using sinusoidal pulse width modulation technique. This inverter output voltage waveform reduces the harmonics in the generated current and the filtering effort at the input. The control strategy allows the independent control of each dc-link voltages and tracks the maximum power point of PV strings. This topology can inject to the grid sinusoidal input currents with unity power factor and achieves low harmonic distortion. A PID control algorithm is implemented in Arm Processor LPC2148. The validity of the proposed inverter is verified through simulation and is implemented in a single phase 100W prototype. The results of hardware are compared with simulation results. The proposed system offers improved performance over conventional three level inverter in terms of THD.