• Title/Summary/Keyword: geothermal gradient

Search Result 48, Processing Time 0.025 seconds

Analysis of Hydraulic Gradient at Coastal Aquifers in Eastern Part of Jeju Island (제주도 동부지역 해안대수층의 조석에 의한 수리경사 변화 연구)

  • Kim, Kue-Young;Shim, Byoung-Ohan;Park, Ki-Hwa;Kim, Tae-Hee;Seong, Hyeon-Jeong;Park, Yun-Seok;Koh, Gi-Won;Woo, Nam-Chil
    • Economic and Environmental Geology
    • /
    • v.38 no.1
    • /
    • pp.79-89
    • /
    • 2005
  • Groundwater level changes in coastal aquifers occur due to oceanic tides, where the properties of oceanic tides can be applied to estimate hyadraulic parameters. Hydraulic parameters of coastal aquifers located in eastern part of Jeju island were estimated using the tidal response technique. Groundwater level data from a saltwater intrusion monitoring well system was used which showed tidal effects from 3 to 5 km. The hydraulic gradient was assessed by utilizing the filtering method from 71 consecutive hourly water-level observations. Calculated hydraulic diffusivity ranged from 2.94${\times}10^7m^2d^{-1}$ to 4.36${\times}10^7m^2d^{-1}$ . The hydraulic gradient of the coastal aquifer area was found to be ~$10^{-4}$, whereas the gradient of the area between wells Handong-1 and 2 was found to be ~$10^{-6}$, which is very low comparatively. Analysis of groundwater monitoring data showed that groundwater levels are periodically higher near coastal areas compared to that of inner land areas due to oceanic tide influences. When assessing groundwater flow direction in coastal aquifers it is important to consider tidal fluctuation.

Geothermal properties for Database (지열자료 정보 D/B 구축 요소)

  • Kim, Hyoung-Chan;Park, Jeong-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.28-31
    • /
    • 2006
  • It is require to construct geothermal database to develop geothermal energy as renewable energy policy. It must be consist of geologic data, borehole data and geophysical data for geothermal database. In aspect of geology, there are included the distribution of geology, structural geology, geological time, rock name, density of rock, porosity, thermal diffusivity, specific capacity and thermal conductivity In order to calculate the heat general ion, it is needed to analysis the radioactivity elements as U, Th and K of rock. In aspect of borehole data, there are included temperature of depth, surface temperature and geothermal gradient And also there is geotherrnornetry using chemical components of groundwater as Na Ca, K and $SiO_2$. In aspect of geophysical data, there are some thematic map as booger gravity anomaly data and magnetic survey data and etc. In addition, it is important to descript the distribution of hot spring and water temperature.

  • PDF

Simulation of thermal distribution with the effect of groundwater flow in an aquifer thermal energy storage (ATES) system model (대수층 축열 에너지(ATES) 시스템 모델에서 지하수 유동 영향에 의한 지반내 온도 분포 예측 시뮬레이션)

  • Shim, Byoung-Ohan
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Aquifer Thermal Energy Storage (ATES) can be a cost-effective and renewable geothermal energy source, depending on site-specific and thermohydraulic conditions. To design an effective ATES system having the effect of groundwater movement, understanding of thermohydraulic processes is necessary. The heat transfer phenomena for an aquifer heat storage are simulated by using FEFLOW with the scenario of heat pump operation with pumping and waste water reinjection in a two layered confined aquifer model. Temperature distribution of the aquifer model is generated, and hydraulic heads and temperature variations are monitored at the both wells during 365 days. The average groundwater velocities are determined with two hydraulic gradient sets according to boundary conditions, and the effect of groundwater flow are shown at the generated thermal distributions of three different depth slices. The generated temperature contour lines at the hydraulic gradient of 0.001 are shaped circular, and the center is moved less than 5 m to the direction of groundwater flow in 365 days simulation period. However at the hydraulic gradient of 0.01, the contour center of the temperature are moved to the end of east boundary at each slice and the largest movement is at bottom slice. By the analysis of thermal interference data between two wells the efficiency of the heat pump system model is validated, and the variation of heads is monitored at injection, pumping and no operation mode.

  • PDF

Characterization of Area Installing Combined Geothermal Systems : Hydrogeological Properties of Aquifer (복합지열시스템에 대한 부지특성화: 대수층의 수리지질학적 특성)

  • Mok, Jong-Koo;Park, Yu-Chul;Park, Youngyun;Kim, Seung-Kyum;Oh, Jeong-Seok;Seonwoo, Eun-Mi
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.293-304
    • /
    • 2017
  • This study was performed in order to hydrogeological analysis of aquifer, which is a necessary part for evaluating the efficiency of the combined well and open-closed loops geothermal (CWG) systems. CWG systems have been proposed for the effective utilization of geothermal energy by combining open loop geothermal systems and closed loop geothermal systems. Small aperture CWG systems and large aperture CWG systems were installed at a green house land with water curtain facilities in Chungju City. Aquifer tests include pumping tests and step-drawdown tests were conducted to analyse hydrogeological characteristics of aquifer in the study area. The transmissivity was estimated in the range of $13.49{\sim}58.99cm^2/sec$, and the storativity was estimated in the range of $1.13{\times}10^{-5}{\sim}5.20{\times}10^{-3}$. The geochemical analysis showed $Ca^{2+}$ ion and ${HCO_3}^-$ ion were dominant in groundwater. The Langelier Saturation Index and the Ryznar Stability Index showed low scaling potential of groundwater. In the analysis of vertical water temperature change, the geothermal gradient was estimated as $2.1^{\circ}C/100m$, which indicated the aquifer was enough for geothermal systems. In conclusion, groundwater is rich, can stably use geothermal heat, and it is less likely to cause deterioration of thermal energy efficiency by precipitation of carbonate minerals in study area. Therefore, the study area is suitable for installation of the combined geothermal system.

A Study on Hydraulic Characteristics of Permeable Rock Fractures in Deep Rock Aquifer Using Geothermal Gradient and Pumping Test Data (지온경사와 양수시험 자료를 활용한 심부 암반대수층 투수성 암반균열의 수리특성 연구)

  • Hangbok Lee;Cholwoo Lee;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.312-329
    • /
    • 2024
  • In various underground research projects such as energy storage and development and radioactive waste disposal targeting deep underground, the characteristics of permeable rock fractures that serve as major pathway of groundwater flow in deep rock aquifer are considered as an important evaluation factor in the design, construction, and operation of research facilities. In Korea, there is little research and database on the location and hydraulic characteristics of permeable rock fractures and the pattern of groundwater flow patterns that may occur between fractures in deep rock boreholes. In this paper, the hydraulic characteristics of permeable rock fractures in deep rock aquifer were evaluated through the analysis of geothermal gradient and pumping test data. First, the deep geothermal distribution was identified through temperature logging, and the geothermal gradient was obtained through linear regression analysis using temperature data by depth. In addition, the hydraulic characteristics of the fractured rock were analyzed using outflow temperature obtained from pumping tests. Ultimately, the potential location and hydraulic characteristics of permeable rock fractures, as well as groundwater flow within the boreholes, were evaluated by integrating and analyzing the geophysical logging and hydraulic testing data. The process and results of the evaluation of deep permeable rock fractures proposed in this study are expected to serve as foundational data for the successful implementation of underground research projects targeting deep rock aquifers.

Magnetotelluric survey applied to geothermal exploration: An example at Seokmo Island, Korea (자기지전류법을 이용한 석모도에서의 지열자원 탐사)

  • Lee, Tae-Jong;Han, Nu-Ree;Song, Yoon-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.61-68
    • /
    • 2010
  • A magnetotelluric (MT) survey has been performed to delineate deeply extended fracture systems at the geothermal field in Seokmo Island, Korea. To assist interpretation of the MT data, geological surveying and well logging of existing wells were also performed. The surface geology of the island shows Cretaceous and Jurassic granite in the north and Precambrian schist in the south. The geothermal regime has been found along the boundary between the schist and Cretaceous granite. Because of the deep circulation along the fracture system, geothermal gradient of the target area exceeds $45^{\circ}C/km$, which is much higher than the average geothermal gradient in Korea. 2D and 3D inversions of MT data clearly showed a very conductive anomaly, which is interpreted as a fracture system bearing saline water that extends at least down to 1.5 km depth and is inclined eastwards. After drilling down to the depth of 1280 m, more than 4000 tons/day of geothermal water overflowed with temperature higher than $70^{\circ}C$. This water showed very similar chemical composition and temperature to those from another existing well, so that they can be considered to have the same origin; i.e. from the same fracture system. A new geothermal project for combined heat and power generation was launched in 2009 in Seokmo Island, based on the survey. Additional geophysical investigations including MT surveys to cover a wider area, seismic reflection surveys, borehole surveys, and well logging of more than 20 existing boreholes will be conducted.

Design of Geothermal Resource Information System (지열자원 정보시스템의 설계)

  • Baek, Seung-Gyun;Kim, Hyoung-Chan;Park, Jeong-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.646-649
    • /
    • 2008
  • 최근 유가 폭등으로 관심이 고조되고 있는 청정 재생에너지인 지열자원의 효과적인 개발 및 활용을 위하여 그동안 축적된 지열조사 및 연구정보를 체계적으로 저장,관리, 도시할 수 있는GIS기반의 지열자원 정보시스템을 개발하고자 하였다. 이를 위하여 열물성, 지온경사, 지열류량, 열생산율, 열부존량 등 지열조사 자료를 수집 및 분석하여 공간적 특성과 역할에 따라 기본정보, 참조정보, 분석정보, 부가정보의 4개 자료군, 39개 단위데이터로 분류하였고, 각 단위데이터의 속성 선정과 연계를 위한 GIS 데이터 모델링을 통하여 공간데이터베이스를 설계하였다. 지열자원 정보시스템은 도면표시, 자료조회, 분석/통계등 전반적인 GIS 기능을 이용하여 지열자료의 조회 및 분석이 용이하도록 설계하였다.

  • PDF

Estimating generation capacity of geothermal power generation pilot plant project (우리나라 지열발전 pilot plant 프로젝트의 발전량 추정)

  • Song, Yoonho;Lee, Tae Jong;Yoon, Woon Sang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.197.1-197.1
    • /
    • 2011
  • Target generation capacity of geothermal power generation pilot plant project through the Enhanced Geothermal Systems (EGS) with a doublet system down to 5 km depth was estimated. Production and re-injection temperatures of geothermal fluid were assumed $160^{\circ}C$ and $60^{\circ}C$, respectively, based on reservoir temperature of $180^{\circ}C$ calculated from the geothermal gradient of $33^{\circ}C$ in Pohang area. In this temperature range, 0.11 of thermal efficiency of the binary generation cycle is a practical choice. Assuming flow rates of 40 kg/sec, which is possible in current EGS technology, gross power generation capacity is estimated to reach 1.848 MW. Net generation considering auxiliary power including pumping power for geothermal fluid and condensing (cooling) energy of working fluid can be 1.5 MW.

  • PDF

Numerical Simulation of Standing Column Well Ground Heat Pump System Part II: Parametric Study for Evaluation of the Performance of Standing Column Well (단일심정 지열히트펌프의 수치적 모델링 Part II: 단일심정 지열히트펌프의 성능평가를 위한 매개변수 연구)

  • Park, Du-Hee;Kim, Kwang-Kyun;Kwak, Dong-Yeop;Chang, Jae-Hoon;Na, Sang-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.2
    • /
    • pp.45-54
    • /
    • 2010
  • The SCW numerical model described in the companion paper was used to carry out a comprehensive parametric study to evaluate the performance of the SCW. The five ground related parameters, which are porosity, hydraulic conductivity, thermal conductivity, specific heat, geothermal gradient, and five SCW design parameters, which are pumping rate, well depth, well diameter, dip tube diameter, bleeding rate, were used in the study. Two types of numerical simulations were performed. The first type was used to perform short-term (24-hour) simulation, while the second type 14 day simulation. The study results indicate that the parameters that have important influence on the performance of SCW were hydraulic conductivity, thermal conductivity, geothermal gradient, pumping rate, and bleeding rate. The thermal conductivity had the most important influence on the performance of the SCW. With the increase in the geothermal gradient, the performance increased in the heat mode, but decreased in the cooling mode. The hydraulic conductivity influenced the performance when the value was larger than $10^{-4}m/s$. The depth of the well increased the performance, but at the cost of increased cost of boring. The bleeding had an important influence on SCW, greatly enhancing the performance at a limited increased cost of operation. Overall, this study showed that various factors had a cumulative influence on the performance of the SCW, and a numerical simulation can be used to accurately predict the performance of the SCW.

Interpretation of Geophysical Well Logs from Deep Geothermal Borehole in Pohang (포항 심부 지열 시추공에 대한 물리검층 자료해석)

  • Hwang, Se-Ho;Park, In-Hwa;Song, Yoon-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.332-344
    • /
    • 2007
  • Various geophysical well logs have been made along the four deep wells in Pohang, Gyeongbuk. The primary focus of geophysical well loggings was to improve understanding the subsurface geologic structure, to evaluate in situ physical properties, and to estimate aquifer production zones using fluid temperature and conductivity gradient logs. Especially natural gamma logs interpreted with core logs of borehole BH-1 were useful to discriminate the lithology and to determine the lithologic sequences and boundaries consisting of semi-consolidated Tertiary sediments and intrusive rocks such as basic dyke and Cretaceous sediments. Cross-plot of physical properties inferred from geophysical well logs were used to identify rock types such as Cretaceous sandstone and mudstone, Tertiary sediments, rhyolite, and basic dyke. The temperature log indicated $82.51^{\circ}C$ at the depth of 1,981.3 meters in borehole BH-4. However, considering the temperature of borehole BH-2 measured under stable condition, we expect the temperature at the depth in borehole BH-4, if it is measured in stable condition, to be about 5 or $6^{\circ}C$ higher. Several permeable fractures also have been identified from temperature and conductivity gradient logs, and cutting logs.