• Title/Summary/Keyword: geothermal application

검색결과 107건 처리시간 0.024초

수평형 지열히트펌프 시스템의 시설원예 냉난방 실증 효과 (Heating and Cooling Effect of Portected Horticulture by Geothermal Heat Pump System with Horizontal Heat Exchanger)

  • 유영선;강연구;김영중;강금춘
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.630-633
    • /
    • 2008
  • Geothermal heat pump systems use the earth as a heat source in heating mode and a heat sink in cooling mode. These systems can be used for heating or cooling systems in farm facilities such as greenhouses for protected horticulture, cattle sheds, mushroom house and etc. A horizontal type means that a geothermal heat exchanger is laid in the trench buried in 1.2 to 1.8 m depth. Because a horizontal type has advantages of low installation, operation and maintenance costs compared to a vertical type, it is easy to be adopted to agriculture. In this study, to heat and cool farm facilities and obtain basic data for practical application of horizontal geothermal heat pump system in agriculture, a horizontal geothermal heat pump system of 10 RT was installed in greenhouse. Heating and cooling performance of this system was estimated. The horizontal geothermal heat pump used in this study had heating COP of 4.57 at soil temperature of $14^{\circ}C$ with depth of 1.75m and heating COP of 3.75 at soil temperature of $7^{\circ}C$ with the same depth. The cooling COP was 2.7 at ground temperature at 1.75m depth of $25.5^{\circ}C$ and 2.0 at the temperature of $33.5^{\circ}C$.

  • PDF

주거용 직접순환식 수직밀폐형 지열원 열펌프의 연간 운전성능 평가 (Annual Performance Evaluation of Direct Expansion Vertical Closed-Loop Ground Source Heat Pump for Residential Application)

  • 김민성;백영진;라호상
    • 한국태양에너지학회 논문집
    • /
    • 제32권3호
    • /
    • pp.114-122
    • /
    • 2012
  • Vertical closed-loop ground source heat pump systems(GSHP) have been installed widely in Korea since it can extract moderate temperature level of geothermal heat in a small area. As a ground heat exchanger, a vertical closed -loop type with brine circulation is mostly preferred since it is simple and less harmful to ground environment. However, it requires a secondary heat exchange loop between the refrigerant in a heat pump and the brine. By adding a geothermal heat exchanger in the secondary heat exchange loop, circulation pumps should be attached and the temperature difference between refrigerant and ground is increased, which are important parts of performance degradation. In this paper, annual and seasonal performances of direct expansion(DX) geothermal heat pump were estimated mathematically as an alternative of classical indirect geothermal heat pump based on the annual performance evaluation. As results, DX geothermal heat pump showed 43% higher annual performance than the classical U-tube geothermal heat pump.

Thermo-fluid engineering in deep geothermal energy

  • 김영원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.84.1-84.1
    • /
    • 2015
  • Recent years in particular in Korea see intensive interests in a deep geothermal engineering and its application in different uses as far as from direct uses to power generation sectors, that are achieved by harnessing hot energy sources from the earth. For instance widespread interest has been generated because the geothermal energy is the source that one extracts it for more than 20 hours per day and for about 30 years of an operation of the plant, which enables to give base load as for heating as well as an electric generation. In retrospect, shallow geothermal energy using heat pumps is commonplace in Korea while the deep geothermal is in the early stage of the development. Geothermal energies in view of the way of extracting heat are mainly categorized into several types such as a single well system, a hydrothermal system, an enhanced geothermal system (EGS) etc. In this talk, this speaker focuses on the thermo-fluid engineering of the single well system by introducing the modeling in order to harness hot fluid that is thermally balanced with the fluid of an injection well, which provides a challenge to assess the life time of the well. To avoid the loss of the temperature in producing the hot fluid, a specialized pipe or a borehole heat exchanger has been designed, and its concept is introduced. On the other hand, a binary system or an organic Rankine cycle, which provides the methodology to convert the heat into an electricity, is briefly introduced. Some experimental results of the binary system which has been constructed in our lab will be presented. Lastly as for the future direction, some comments for the industrialization of the deep geothermal energy in this country will be discussed.

  • PDF

지열 열펌프 및 태양광 발전 적용이 비주거용 건물의 에너지효율등급과 ZEB 인증 등급에 미치는 영향 (The Effect of a Geothermal Heat Pump and Photovoltaics Application on the Building Energy Efficiency and ZEB Certification Rating for a Non-Residential Building)

  • 문건호;박창용
    • 한국지열·수열에너지학회논문집
    • /
    • 제19권1호
    • /
    • pp.1-13
    • /
    • 2023
  • Many government in the world have conducted building energy performance certification program to reduce building energy consumption. In this study, a reference building and its HVAC system was modeled, and the energy load and consumption were estimated by the ECO2 program. The software is a simple building energy simulation program based on monthly calculated method. The building energy efficiency rating the the reference building was 1+ under baseline condition. The simulation results showed that the insulation performance slightly affected building energy load and consumption, but light density had a significant effect on them. The application of geothermal heat pumps gave improvement of building energy efficiency rating but it could not make it possible to get zero energy building(ZEB) certification. The ZEB 5 certification could be achieved by using photovoltaics, however getting better grade was difficult. The simulation results showed that the ZEB 4 certification, one grade higher than ZEB 5, could be attained by using more than one renewable energy source such as geothermal and solar energy in this study.

지표수 열교환기 설계 변수와 적용 효과에 대한 선행 분석 (Preliminary Analysis on Design Parameters and Application Effects of Surface Water Heat Exchanger (SWHE))

  • 손병후
    • 한국지열·수열에너지학회논문집
    • /
    • 제12권3호
    • /
    • pp.24-32
    • /
    • 2016
  • Commercial buildings and institutions are generally cooling-dominated and therefore reject more heat to a borehole ground heat exchanger (BHE) than they extract over the annual cycle. Shallow ponds can provide a cost-effective means to balance the thermal loads to the ground and to reduce the length of BHE. This paper presents the analysis results of the impact of design parameters on the length of SWHE pipe and its application effect on geothermal heat pump (GHP) system using BHE. In order to analysis, we applied ${\varepsilon}-NTU$ method on designing the length of SWHE pipe. Analysis results show that the required pipe length of SWHE was decreased with the increase of approach temperature difference and with the decrease of pipe wall thickness. In addition, when the SWHE was applied to the GHP system, the temperature of BHE was more stable than that of standalone BHE system.

100RT급 하수열원 냉난방시스템 적용 (Application for Heating and Cooling System Using Sewage Water)

  • 장기창;윤형기;박성룡;백영진;나호상;신광호
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.215-220
    • /
    • 2006
  • Along with socioeconomic development and improving standard of living, the heat demand for heating and cooling in residential and commercial sectors is expected to expand rapidly, reaching over 43 million TOE by 2010 in Korea(about 80% increase compared with that in 1995). Since most of this heat demand is loop temperature below $60^{\circ}C$, the utilization of 'unused energy' is surely one of very effective measures to both environmental preservation and energy conservation. 'Unused energy' in this paper is implicated as 'temperature differential energy' available from treated sewage water, useful and abundant heat source for heat pump(cooler in summer and warmer in winter than outside air). An analysis was carried out to estimate the energy potential of treated sewage water for heat pump heat source. Some analysis were taken to study the characteristics of a heat pump system using the treated sewage water as heat source.

  • PDF

외기보상제어 적용에 따른 지열 히트펌프 시스템의 에너지 효율 향상에 관한 연구 (A Study on the Energy Efficiency of a Geothermal Heat Pump System in use the Outdoor Reset Control Application)

  • 정영주;김효준;이용호;황정하;조영흠
    • 한국태양에너지학회 논문집
    • /
    • 제35권1호
    • /
    • pp.45-52
    • /
    • 2015
  • The government is fostering a renewable energy industry as an alternative to handle the energy crisis. Among the renewable energy systems available, geothermal energy is being highlighted as being highly efficient and safely operable without the effect of outdoor air. Accordingly, a study on the geothermal heat pump is in progress in various worldwide perspective. However, Geothermal energy is only in charge of part load of the building due to the high initial installation cost in korea. Moreover, its efficiency is reduced due to the use of independent existing heat sources. In this study, after selecting the building containing the actual installed geothermal heat pump, the use of excellent geothermal heat pump systems was maximized in terms of the energy efficiency. The objective of this study is to show the operation method of geothermal heat pump system to improve energy efficiency through the TRNSYS simulation. This paper proposed operation methods of geothermal heat pump control according to outdoor air temperature. The result of this study is that existing operation method had some problems and if offered improvement is applied to real condition, energy consumption would be decreased.

소규모 학교의 냉난방 및 신재생에너지복합시스템 적용방안에 관한 연구 (A Study on the Application Plan of Air-Conditioning and Renewable Complex Systems in the Small Schools.)

  • 김지연;박효순;홍성희;김성실;허인구;서승직
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.946-951
    • /
    • 2009
  • The research aims to study a new, optimum and renewable energy application method that can cover the minimum energy and operation costs within a range of school budgets. By deriving the optimum application method, it is expected to maximize the cooling/heating and water heating energy saving efficiencies for educational facilities. Therefore, this research carried out a study on the new/renewable energy utilization technique diffusion expansion method and the optimum method. As a result, the first optimum plan was introduced with the multi-type geothermal heat pump 174kW + solar heat collector $94\;m^2$ + highly efficient electronic cooling/heating device (EHP) 249.4kW. On the other hand, the second optimum plan was induced as the multi-type geothermal heat pump 255.2kW + highly efficient electronic cooling/heating device (EHP) 168.2kW.

  • PDF

대규모 고등학교의 냉난방 및 신재생에너지시스템 적용방안에 관한 연구 (A Study on the Application Plan of Air-Conditioning and New and Renewable Systems in the Large High Schools)

  • 김지연;박효순;김성실;서승직
    • 설비공학논문집
    • /
    • 제21권10호
    • /
    • pp.564-574
    • /
    • 2009
  • The study is conducted to study a new, optimum and new and renewable energy application method that can cover the minimum energy and operation costs within a range of school budgets. By deriving the optimum application method, it is expected to maximize the cooling/heating and hot water supply energy saving efficiencies for educational facilities. Therefore, this research implemented a study on the new and renewable energy utilization technique diffusion expansion method and the optimum method. As a result, the first optimum plan was introduced with the multi-type geothermal heat pump 475.6 kW+highly efficient electronic cooling/heating device(EHP) 545.2 kW. On the other hand, the second optimum plan was induced as the multi-type geothermal heat pump 261kW+solar heat collector $240\;m^2$+highly efficient electronic cooling/heating device(EHP) 759.8 kW.