• Title/Summary/Keyword: geotechnical design

Search Result 1,815, Processing Time 0.023 seconds

Comparison of Performance between Regular Drilled Shaft and Isolation Tube Drilled Shafts (일반 현장 타설 말뚝과 분리형 현장 타설 말뚝의 거동 비교)

  • Kim, Myung-Hak;O'Neill, Michael W.
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.211-220
    • /
    • 2000
  • An experimental study that included detailed observation of four 305-mm-diameter drilled shafts, one reference shaft of standard design and three test shafts with isolation tubes to mitigate skin friction in the vadose zone of a clay soil profile, is described. The shafts were loaded only by naturally expanding and contraction soil over a period of 17 months. The soil at the test site was instrumented to track suction and elevation changes. Maximum ground surface movements exceeding 40 mm were observed. Heave movements of less than 1.5 mm were observed in the test shafts with isolation tubes, while movements of 5 mm were observed in the reference shaft. Unit side shear loads in the shafts protected by the isolation tubes were minimal compared to those measured in the reference shaft. This indicates that the isolation tubes were very effective.

  • PDF

Analysis of Steep Cuts and Slopes in Cemented Sand Using Fracture Mechanics (파괴역학을 이용한 경화모래로 이루어진 사면의 해석)

  • Kim, Tae-Hoon;Kang, Kwon-Soo;Lee, Jong-Cheon
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.161-168
    • /
    • 2003
  • Most natural deposits of sandy soil possess some degree of cementation resulting from the deposition and precipitation of cementing agents. The presence of cementation can have a significant influence on the stiffness and volume change behavior, and the strength of soils. An important feature of deposits of cemented sandy soils is their ability to remain stable in surprisingly high and almost vertical man-made cuts as well as natural slopes. Numerous field observations and studies of failures in slopes of cemented soils have reported that application of conventional analysis techniques of slope stability is inadequate. That is not only due to the fact that the failure surface of the slope is not circular, but also the fact that the average shear stress along the failure surface is much smaller than the shear strength measured in laboratory shear experiments. This observation alerts us to the fact that a mechanism different from conventional Mohr-Coulomb shear failure takes place, which may be related to fracture processes, which in turn are governed by fracture mechanics concepts and theory. In this study, steep slopes in cemented sand were assessed using fracture mechanics concepts. The results showed that FEM coupled with fracture mechanics concepts provides an excellent alternative in the design and safety assessment of earth structures in cemented soils.

Evaluation of Interface Shear Properties Between Geosynthetics and Soils Through Inclined Board Tests (경사판 시험을 통한 토목섬유와 흙의 접촉 전단 특성 평가)

  • 서민우;신준수;박준범;박인준
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.285-298
    • /
    • 2003
  • Shear properies of geosynthetic/geosynthetic and geosynthetic/soil interfaces which are widely met in landfill sites were evaluated from the inclined board tests. The inclined board testing apparatus is known to reproduce the shear behavior on the low normal stress most accurately. In this study, the friction angle of each interface was estimated and the tensile force mobilized at the geosynthetic was measured as well. The test results showed that the friction angle of each interface and the tensile force of the geosynthetics depended on the amount of normal stress, the type of the geosynthetics used, and the combinations of geosynthetics and soils. In addition, the sand/geotextile/geomembrane interface system was simulated in this study, and it was observed that the tensile force developed at the geomembrane decreased due to the protection effect of the geotextile located above the geomembrane. The test results of this research was compared with those of direct shear tests published, too. Finally, by comparing the measured tensile force of the geosynthetics when the initial displacement of the box occurs, when the slope is called as the critical slope, with suggested analytic solution, the accuracy of analytic solution and the applicability to design were identified.

Estimation of Consolidation Period for Dredged Soil by Mikasa Theory (Mikasa 압밀이론에 의한 준설토지반의 압밀기간 산정에 관한 연구)

  • 주재우;정규향;조진구
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.299-306
    • /
    • 2003
  • Dredged soil experiences large settlement during consolidation because of its high water contents. Large settlement alters the thickness of the consolidation layer greatly with time. However, the consolidation theory proposed by Terzaghi assumes the thickness of the consolidation layer to stay constant. Mikasa has developed a more rational theory considering the change of thickness of consolidation layer but it is not well applied at the site. In this study consolidation tests have been performed using Rowe cell for the four dredged clay samples with a water content of 100%, 120%, 133% and 150%. From the test results compression index characteristics and coefficient of consolidation characteristics have been investigated. Coefficients of consolidation obtained by Terzaghi's and Mikasa's theories, have been evaluated and compared with each other. When Mikasa theory is applied in the field design, the period to reach the required degree of consolidation has been reduced compared with the result by Terzaghi theory because the time factor $T_{v}$ by Mikasa theory decreases with increasing of final strain of consolidation layer, Calculation method consolidation time by Mikasa theory was concisely explained for its practical use.e.

Evaluation of Rocking Mechanism for Embedded Shallow Foundation via Horizontal Slow Cyclic Tests (수평반복하중 실험을 이용한 근입된 얕은 기초의 회전거동 메커니즘 평가)

  • Ko, Kil-Wan;Ha, Jeong-Gon;Park, Heon-Joon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.8
    • /
    • pp.47-59
    • /
    • 2016
  • Rocking behavior of shallow foundation reduces the superstructure load during earthquake. However, because of deficiency of understanding of rocking mechanism and soil permanent deformation, it has not been applied to real construction. In this study, slow cyclic tests were conducted for embedded shallow foundations with various slenderness ratio via centrifuge tests. From the variation of earth pressure 'soil rounding surface' phenomenon which makes maximum overturning moment equal to ultimate moment capacity was observed. Rocking and sliding behavior mechanism was evaluated. Also, nonlinear behavior and energy dissipation increase as rotation angle increases. And ultimate moment capacity of embedded foundation is larger than that of surface foundation. Finally, adequate ultimate moment capacity can be suggested for seismic design through this study.

An Effective Stress Analysis of Unsaturated Slope Failures by Rainfall Infiltration (강우 침투로 인한 불포화 사면 붕괴의 유효응력 해석)

  • Lee, Young-Huy;Oh, Se-Boong;Jin, In-Chul;Kim, Jun-Woo;Park, Yeong-Mog
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.77-85
    • /
    • 2013
  • Unsaturated slopes experience infiltration during rainfall and become unstable when saturated. On the viewpoint of unsaturated effective stress, as matric suction decreases, both effective stress and shear strength decrease, which declines slope stability consequently. This study is focused on describing effective stress based on suction stress. The actual slope failures are simulated to calculate factors of safety in the field of finite element stress. In the residual soils of Hadong and Pohang, unsaturated properties are evaluated by laboratory tests. For unsaturated slopes, analyses of infiltration, stress and stability were performed to simulate actual failures. Based on unsaturated effective stress principle, the stability of actual slopes could be evaluated successfully. It is verified for the effective stress concept to be applicable to the engineering practice on slope design which considers infiltration by rainfall.

Performance Evaluation of Buried Concrete Pipe under Heavy Traffic Load (교통하중하의 지하 매설관의 거동 평가)

  • Ban, Hoki;Park, Seong-Wan;Kim, Yong-Rak
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.69-75
    • /
    • 2013
  • Pipeline is very important infrastructure which is directly related to our daily life. Nevertheless, it is not considered significantly unless it breaks. As most pipelines are buried at a certain depth from the surface of road pavement in urban areas, they are subjected to traffic load. This paper presents the performance of buried concrete pipe under heavy traffic load. Hence, one of the major factors affecting their performance is burial depth. To consider this factor, the ratio of burial depth (H) to diameter of pipe (D) was defined as a key variable. The integrity of buried concrete pipe was investigated with two cases of ratio of burial depth to pipe diameter (H/D=2 and H/D=4). The results provide the limit burial depth to ensure the soundness of buried concrete pipe subjected to heavy traffic load, and more economical design is anticipated with the results.

Investigating the supporting effect of rock bolts in varying anchoring methods in a tunnel

  • Wang, Hongtao;Li, Shucai;Wang, Qi;Wang, Dechao;Li, Weiteng;Liu, Ping;Li, Xiaojing;Chen, Yunjuan
    • Geomechanics and Engineering
    • /
    • v.19 no.6
    • /
    • pp.485-498
    • /
    • 2019
  • Pre-tensioned rock bolts can be classified into fully anchored, lengthening anchored and point anchored bolts based on the bond length of the resin or cement mortar inside the borehole. Bolts in varying anchoring methods may significantly affect the supporting effect of surrounding rock around a tunnel. However, thus far, the theoretical basis of selecting a proper anchoring method has not been thoroughly investigated. Based on this problem, 16 schemes were designed while incorporating the effects of anchoring length, pretension, bolt length, and spacing, and a systematic numerical experiment was performed in this paper. The distribution characteristics of the stress field in the surrounding rock, which corresponded to various anchoring scenarios, were obtained. Furthermore, an analytical approach for computing the active and passive strengthening index of the anchored surrounding rock is presented. A new fully anchoring method with pretension and matching technology are also provided. Then, an isolated loading model of the anchored surrounding rock was constructed. The physical simulation test for the bearing capacity of the model was performed with three schemes. Finally, the strengthening mechanism of varying anchoring methods was validated. The research findings in this paper may provide theoretical guidelines for the design and construction of bolting support in tunnels.

System Identification Analysis on Soil-Structure Interaction Using Field Data (현장자료를 사용한 지반-구조물 상호작용에 대한 경험적 연구)

  • Kim Seung Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.37-46
    • /
    • 2005
  • In the field of earthquake engineering, recent improvements in many areas, such as seismological source modeling, analysis of travel path effects, and characterization of local site effects on strong shaking, have led to significant advances in both code-based and more advanced procedures for evaluating earthquake ground motions. A missing link, however, is empirically verified design procedures fur assessing the effects of soil-structure interaction (SSI). Available Soil-Structure Interaction (SSI) analysis techniques range from simple substructure-type procedures to relatively sophisticated finite element procedures. The most common substructure approach for foundation-soil interaction is to use a frequency-dependent and complex-valued impedance function. This study uniquely evaluates impedance functions for two well-instrumented sites w significant inertial SSI effects using a system Identification technique. The system identification analysis results are then compared to predictions from a simple theoretical model to gain insight into the inertial interaction effect in the subject sites.

Evaluation of Maximum Shear Modulus of Silty Sand in Songdo Area in the West Coast of Korea Using Various Testing Methods (다양한 시험 방법을 이용한 서해안 송도 지역에 분포하는 실트질 모래의 최대 전단탄성계수 평가)

  • Jung Young-Hoon;Lee Kang-Won;Kim Myoung-Mo;Kwon Hyung-Min;Chung Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.65-75
    • /
    • 2005
  • Maximum shear modulus of soil is a principal parameter for the design of earth structures under static and dynamic loads. In this study, the statistical data of maximum shear moduli of silty sands in Songdo area in the west coast of Korea evaluated by various field and laboratory tests - standard penetration test (SPT), cone penetration test (CPT), self-boring pressuremeter test (SBPT), downhole test (DH), seismic cone penetration test (SCPT) and resonant column test (RC) were analyzed. Based on the measurement of shear moduli using DH which is known as maximum value at very small strain, the new empirical correlations between shear moduli and SPT or CPT values were proposed. Predictions of maximum shear moduli using the proposed correlations were compared with the data obtained from DH. The good agreement confirmed that the proposed correlations reasonably predicted the maximum shear moduli of silty sands in the area.