• Title/Summary/Keyword: geotechnical design

Search Result 1,815, Processing Time 0.027 seconds

Failure Mechanism of Geosynthetic Reinforced Segmental Retaining Well in Tiered Configuration Using Reduced-scale Model Tests (축소 모형 실험에 의한 계단식 보강토옹벽의 파괴 메카니즘)

  • Yoo Chung-Sik;Jung Hyuk-Sang;Jeon Sang-Soo;Lee Bong-Won;Kim Ki-Yeon;Jeon Han-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.65-77
    • /
    • 2005
  • This paper investigates the failure mechanism of geosynthetic-reinforced segmental retaining walls with tiered configuration using reduced-scale model tests. The reduced scale model test set-up was established to simulate a 5 m high full-scale wall. The geometry and material properties used in the model test were determined based on the Similitude Laws. The wall failures in the model tests were successfully generated by their self weight without any surface loading and analyzed examining the digital video recordings. The failure mechanisms was examined with respect to the various offsets between the lower and upper teres and the reinforcement length. Based on the results the appropriateness of the current design guideline was discussed.

Behaviors of Lightweight Foamed Soils Considering Underwater Curing and Water Pressure Conditions (수중양생 및 수압조건을 고려한 경량기포혼합토의 거동)

  • Yoon Gil-Lim;You Seung-Kyong
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.21-29
    • /
    • 2005
  • Lightweight Foamed Soil (LWFS) could be the substitute of normal soils used in backfill to earth structures and embankment materials far soft ground improvement in port and harbor project because of its effectiveness in settlement reduction and earth pressure decrease due to its lightness. A series of triaxial and unconfined compression tests were performed to investigate behaviors of LWFS composed of dredged soils, cement and air foam, and cured at underwater conditions. The density of LWFS will increase if LWFS is cured at underwater conditions because high water pressure makes air foam disappear or demolish during the curing compared with LWFS cured at normal air conditions. This paper is to find the mechanical behaviors of LWFS cured at seawater depth of 5.0 m and 10.0 m, respectively, which simulates underwater curing conditions by underwater pressure simulator chamber developed during this study. In addition, new normalized factor formula, which takes account of mixing design conditions determining compressive strength of LWFS, was proposed to consider mixing design factor fur LWFS.

Investigation on Behavior of Reinforced Segmental Retaining Walls (블럭식 보강토 옹벽의 거동 특성 연구)

  • 유충식;이광문
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.53-62
    • /
    • 1999
  • Despite the frequent use of the soil-reinforced segmental retaining wall (SRW) system, the roles of the different components comprising the system, such as facing blocks, reinforcements, backfill, and block/backfill interface, are still not fully understood, and much still need to be investigated for more safe and economical design/analysis method. Therefore, this study was undertaken with the aim of understanding the effect of the shear strength of backfill material and the reinforcement stiffness on the behavior of SRW by using the finite element analysis. In the analysis the details of construction sequence and the SRW components were carefully modeled, and a parametric study was performed in order to investigate the effects of shear strength of backfill soil and reinforcement stiffness on the wall displacement and earth pressure, the vertical stress under the reinforced block, the reinforcement and block/reinforcement connection forces. Implications of the findings from this study to current design practices were discussed in detail.

  • PDF

Effect of Foundation Stiffness on Behavior of Soil-reinforced Segmental Retaining Walls (기초지반의 강성이 보강토 옹벽의 거동에 미치는 영향)

  • 유충식;김주석
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.7-19
    • /
    • 2002
  • This paper presents the results of an investigation on the effect of foundation stiffness on the performance of soil-reinforced segmental retaining walls (SRWalls). Laboratory model tests were performed using a reduced-scale physical model to capture the fundamentals of the manner in which the foundation stiffness affects the behavior of SRWalls. A series of finite-element analyses were additionally performed on a prototype wall in order to supplement the findings from the model tests and to examine full-scale behavior of SRWalls encountered in the field. The results of the present investigation indicate that lateral wall displacements significantly increase with the decrease of the foundation stiffness. Also revealed is that the increase in wall displacements is likely to be caused by the rigid body movement of the reinforced soil mass with negligible internal deformation within the reinforced soil mass. The findings from this study support the current design approaches, in which the problem concerning the foundation condition are treated in the frame work of the external stability rather than the internal stability. The implications of the findings from this study to current design approaches are discussed in detail.

A Study on the Optimal Mixture Ratio for Stabilization of Surface Layer on Ultra-soft Marine Clay (초연약 해성점토의 표층고화처리를 위한 최적배합에 관한 연구)

  • 천병식;고경환;김진춘
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.33-43
    • /
    • 2002
  • Recently, as large constructions on the coast increase, an application of a surface layer stabilization method which is one of the improvement methods for dredged soft clay has increased. However, there are few studies about this. The purpose of this study is clarifying characteristics of ultra-soft marine clay and hardening agent. Also, it is verifying an optimal mixture ratio of hardening agent through the laboratory tests according to designed experiments and proving by statistical analysis and pilot tests. Laboratory tests were performed with proper hardening agent and test soil in accordance with the design of experiments. Regression equations between hardening agents materials and unconfined compressive strength were derived from the tests. The applicability of regression equations were also verified by pilot tests. From the test results, it was found that hardening agent materials(cement, slag, fly-ash, inorganic salts, arwin, gypsum etc.) have some effect upon compressive strength. The optimal mixture ratio which satisfies the required compressive strength was derived from the statistical analysis. The effect of ground improvement by cements and hardening agents was confirmed through the pilot tests. This study will suggest data for design or construction criteria of stabilization of surface layer on ultra-soft marine clay.

The Evaluation of Interface Shear Strength Between Geomembrane and Ceotextile (지오멤브레인/지오텍스타일의 접촉 전단강도 평가)

  • 서민우;박준범;김운영
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.79-89
    • /
    • 2002
  • Various geosynthetics used as liners or protection layers are installed in the solid waste landfills. The interface shear strength between geosynthetics installed at the slope of the landfill is a very important variable for the safe design of the bottom and cover systems in the solid waste landfills. The interface shear strength between Geomembrane and Geotexile is estimated by a large direct shear test in this study, The effects of normal stress, water existing between geosynthetics and surface condition of Geomembrae, i.e. smooth or textured, were investigated. The test results show that the effect varied depending on the level of normal stress and the type of geosynthetic combinations. The shear strength was evaluated by the Mohr-Coulomb failure criterion in this research. The shear strength parameters obtained from tests considering the site specific conditions such as normal stress, dry or wet, and surface condition of geosynthetic should be applied to the design of geosynthetics installed at the slope of the landfill to construct a safe solid waste landfill.

Field Measurements for the Lattice Girder and the Shotcrete Lining (격자지보와 숏크리트 계측에 대한 현장실험 연구)

  • Kim, Hak-Joon;Jin, Soo-Hwan;Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.93-102
    • /
    • 2008
  • The use of lattice girder is increased at the tunnel site in Korea because of the several advantages over the traditional H-steel rib. The lattice girder supports the ground with shotcretes, forming a combined support system. Therefore, stress measurements at the lattice girder are necessary to calculated the ground loads. However, field measurements at the lattice girder are rarely performed at the tunnel site. The proper way of stress measurements for the lattice girder is not fully established in Korea. The correction of stress measurements at the shotcretes is often disregarded even though the measured stresses include non-stress related strains. Results of the stress measurements obtained from the lattice girder and non-stress shotcretes are used to improve the credibility of the stress measurements at the primary lining.

Bolted Bonding Method of Steel Pipe Pile and Cap (볼트식 강관말뚝 머리보강 방법)

  • 박영호;김성환;장용채
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.57-71
    • /
    • 1998
  • Present bonding methods which connect steel pipe and spread footing in pile foundation have been generally used. These methods however showed lots of difficulties in the quality control. A new bonding method, which is called 'Bolted Bonding Method(BBM)' , is developed. This method uses factory-made parts so that it may increase the degree of quality, and workability, and is being adopted in the Held concerned. The method is verified by the structural analysis and laboratory test and then a new design formula is proposed. In addition, a comparison test of the present methods and BBM are conducted to observe the applicability and economy of the latter. As results, it is observed that BBM shows 5 to 10 times faster in Held work and 9% to 50% cheaper in construction cost than the existing methods.

  • PDF

Lateral Wall Movements and Apparent Earth Pressures for In-situ Walls during Deep Excavations in Multi-Layered Grounds with Rocks (암반을 포함한 다층토 지반에서의 깊은 굴착시 흙막이벽체의 수평변위 및 겉보기토압)

  • 유충식;김연정
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.43-50
    • /
    • 2000
  • This paper presents the measured performance of in-situ walls using the measured data collected from various deep excavation sites in urban area. A variety of in-situ wall systems from 57 sites were considered, including H-pile walls, soil cement walls, cast-in-place pile walls, and diaphram walls. The examination included lateral wall movements as well as apparent earth pressure distributions. The measured data were thoroughly analyzed to investigate the effects of various components of in-situ wall system, such as types of wall and supporting system, on the lateral wall movement as well as on the apparent earth pressure distribution. The results wee then compared with the current design/analysis methods, and information is presented in chart formes to provide tools that can be used for design and analysis. Using the measured data, a semi-empirical equation for predicting deep excavation induced maximum lateral wall movement is suggested.

  • PDF

Simplified Analysis of Pile Bent Structures and Minimum Reinforcement Ratio (단일 현장타설말뚝의 간편해석 및 최소 철근비 분석)

  • Kim, Jae-Young;Hwang, Taik-Jean;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.5
    • /
    • pp.33-43
    • /
    • 2011
  • In this study, simplified analysis (discrete analysis of column and pile) of pile bent structures was performed on the basis of the equivalent base spring model. And the minimum reinforcement ratio in pile bent structures was evaluated by taking into account various factors. To obtain the detailed information, simplified analysis was performed for column-pile interactions and the behavior of a column-pile was estimated and highlighted. Based on this study, it is shown that previous design method based on virtual fixed point theory cannot adequately predict the physical behavior of pile bent structures. It is found that the maximum bending moment is located within craking moment of the pile when material non-linearity is considered. It is also found that the minimum reinforcement ratio (=0.4%) is appropriately applicable for the optimal design of pile bent structure under ultimate lateral loading.