• Title/Summary/Keyword: geotechnical design

Search Result 1,815, Processing Time 0.023 seconds

A Methodology for Quality Control of Railroad Trackbed Fills Using Compressional Wave Velocities : II. Verification of Applicability (압축파 속도를 이용한 철도 토공노반의 품질관리 방안 : II. 적용성 검증)

  • Park, Chul-Soo;Mok, Young-Jin;Hwang, Seon-Keun;Park, In-Beom
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.57-66
    • /
    • 2009
  • In the preliminary investigation (Park et al., 2009), the use of compressional wave velocity and its measurement techniques were proposed as a new quality control measure for trackbed fills. The methodology follows exactly the same procedure as the density control, except the density being replaced by the compressional wave velocity involving consistently with resilient modulus of design stage. The specifications for the control also include field compaction water content of optimum moisture content ${\pm}2%$ as well as the compressional wave velocity. In this sequel paper, crosshole and resonant column tests were performed as well direct-arrival method and laboratory compressional wave measurements to verify the practical applicability of a methodology far the new quality control procedure based upon compressional wave velocity. The stress-modified crosshole results reasonably well agree with the direct-arrival values, and the resonant column test results also agree well with the field crosshole results. The compressional wave velocity turned out to be an excellent control measure for trackbed fills both in the theoretical and practical point of view.

The Optimization of Hyperbolic Settlement Prediction Method with the Field Data for Preloading on the Soft Ground (쌍곡선법을 이용한 계측 기반 연약지반 침하 거동 예측의 최적화 방안)

  • Choo, Yoon-Sik;Kim, June-Hyoun;Hwang, Se-Hwan;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.147-159
    • /
    • 2010
  • The settlement prediction is very important in preloading method for a construction site on the soft ground. At the design stage, however, it is hard to predict the settlement exactly due to limitations of the site survey. Most of the settlement prediction is performed by a regression settlement curve based on the field data during construction. In Korea, hyperbolic method has been most commonly used to align the settlement curve with the field data, because of its simplicity and many application cases. The results from hyperbolic method, however, may differ by data selections or data fitting methods. In this study, the analyses using hyperbolic method were performed about the field data of $\bigcirc\bigcirc$ site in Pusan. Two data fitting methods, using an axis transformation or an alternative method which is a direct regression method, were applied with various data groups. If data was used only after the ground water level being stabilized, fitting results using both methods were in good agreement with the measured data. Regardless of the information about the ground water level, the alternative method gives better results with the field data than the method using an axis transformation.

Temperature Compensation on the Cone Tip Resistance by Using FBG Temperature Transducer (FBG센서를 이용한 콘 선단저항력의 온도영향 보상)

  • Kim, Rae-Hyun;Lee, Jong-Sub;An, Shin-Whan;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.31-40
    • /
    • 2009
  • As the measurement of strain-gage type cone penetrometer is influenced by the temperature change during penetration, the temperature is a factor producing an error of the cone tip resistance. In this study, the 0.5 mm diameter temperature transducer and 7 mm diameter micro cone penetrometer are manufactured by using FBG sensors to evaluate the effect of temperature on the cone tip resistance. Design concepts include the cone configuration, sensor installation and the temperature compensation process. The test shows that the tip resistance measured by strain gauge is affected by the temperature change. The error of the tip resistance increases with an increase in temperature change, while the temperature effect on the tip resistance of FBG cone is effectively compensated by using FBG temperature transducer. Temperature compensated tip resistance of the strain gauge cone shows the good matched profile with FBG cone which performs real-time temperature compensation during penetration. This study demonstrates that the temperature compensation by using FBG sensor is an effective method to produce the more reliable cone tip resistance.

Estimation of Critical Height of Embankment to Mobilize Soil Arching in Pile-supported Embankment (말뚝지지성토지반 내 지반아칭이 발달할 수 있는 한계성토고의 평가)

  • Hong, Won-Pyo;Hong, Seong-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.89-98
    • /
    • 2010
  • A method to design a critical height of embankments is presented so as to mobilize fully soil arching in pile-supported embankments. The behavior of the load transfer of embankment weights on pile cap beams was investigated by a series of model tests performed on pile-supported embankments with relatively wide space between cap beams. The model tests explained that the behavior of the load transfer depended very much on the height of embankments, because soil arching could be mobilized in pile-supported embankments only under enough high embankments. The measured vertical loads on cap beams coincided with the predicted ones estimated by the theoretical equations, which have been presented in the previous studies on the basis of load transfer mechanisms according to either the punching shear failure mode during low filling stage or the soil arching failure mode during high filling stage. The mechanism of the load transfer was shifted beyond a critical height of embankment from the punching shear mechanism to the soil arching mechanism. Therefore, in order to mobilize soil arching in pile-supported embankments, the embankments should be designed at least higher than the critical height. A theoretical equation to estimate the critical height could be derived by equalizing the vertical loads estimated by the load transfer mechanisms on the basis of both the punching shear and the soil arching. The derived theoretical equation could predict very well the experimental critical height of embankment.

Geophysical Techniques for Underwater Landslide Monitoring (수중 산사태 모니터링을 위한 지반물리탐사기술)

  • Truong, Q. Hung;Lee, Chang-Ho;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.5-16
    • /
    • 2007
  • The monitoring and investigation of underwater landslide help to understand its mechanism, increase the usefuless of design and construction and reduce the losses. This paper presents three high resolution geophysical techniques electrical resisitance, ultrasonic wave reflection imaging, and shear wave tomography conducted to determine the lab-scaled submerged landslide. Electrical resistance profiles of a soil mass obtained by an electrical resistance probe provide detailed information to assess the spatial distribution of the soil mass with milimetric resolution. An ultrasonic wave image obtained by recording the reflections from interfaces of different impedance materials permits detecting layers and landslide with submilimetric resolution. The pixel based image of immersed landslides is created by the inversion of the boundary information achieved from the traveling time of shear waves. The experimental results show that the ultrasonic wave imaging and the electrical resistance can provide complementary information; and their association with S-wave tomography image can produce a 3-D view of the underwater landslide. This study suggests that geophysical techniques may be effective tools for the detection of the underwater landslides and spatial distribution offshore.

Effect of Wind Load on Pile Foundation Stability in Solar Power Facilities on Slopes (풍하중이 경사지 태양광 발전시설의 기초 안정성에 미치는 영향 분석)

  • Woo, Jong-Won;Yu, Jeong-Yeon;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.47-60
    • /
    • 2023
  • At present, in South Korea, there is a growing concern regarding solar power facilities installed on slopes because they are prone to damage caused by natural disasters, such as heavy rainfall and typhoons. Each year, these solar power facilities experience soil erosion due to heavy rainfall and foundation damage or detachment caused by strong wind loads. Despite these challenges, the interaction between the ground and structures is not adequately considered. Current analyses primarily focus on the structural stability under external loads; the overall facility site's stability-excluding the solar structures-in relation to its surrounding slopes is neglected. Therefore, in this study, we use finite-difference method analysis to simulate the behavior of the foundation and piles to assess changes in lateral displacement and bending stress in piles, as well as the safety factor of sloped terrains, in response to various influencing factors, such as pile diameter, spacing between piles, pile-embedding depth, wind loads, and dry and wet conditions. The analysis results indicate that pile spacing and wind loads significantly influence lateral displacement and bending stress in piles, whereas pile-embedding depth strongly influences the safety factor of sloped terrains. Moreover, we found that under certain conditions, the design criteria in domestic standards may not be met.

Prediction of Pull-Out Force of Steel Pegs Using the Relationship Between Degree of Compaction and Hardness of Soil Conditioned on Water Content (함수비에 따른 토양의 다짐도와 경도의 관계를 이용한 철항의 인발저항력 예측 연구)

  • Choi, In-Hyeok;Heo, Gi-Seok;Lee, Jin-Young;Kwak, Dong-Youp
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.23-35
    • /
    • 2023
  • The Ministry of Agriculture, Food and Rural Affairs has announced design standards for disaster-resilient greenhouses capable of resisting wind speeds with a 30-year frequency to respond to the destruction of greenhouses caused by strong winds. However, many greenhouses are still being maintained or newly installed as conventional standard facilities for the supply type. In these supply-type greenhouses, a small pile called a steel peg is used as reinforcement to resist wind-induced damage. The wind resistance of steel pegs varies depending on the soil environment and installation method. In this study, a correlation analysis was performed between the wind resistance of steel pegs installed in loam and sandy loam, using a soil hardness meter. To estimate the pull-out force of steel pegs based on soil water content and compaction, soil compaction tests and laboratory soil box and field tests were performed. The soil compaction degree was measured using a soil hardness meter that could easily confirm soil compaction. This was used to analyze the correlation between the soil compaction degree in the tests. In addition, a correlation analysis was performed between the pull-out force of steel pegs in the soil box and field. The findings of this study will be useful in predicting the pull-out force of steel pegs based on the method of steel peg installation and environmental changes.

Failure Envelope of Suction Caisson Foundations in Clay Subjected to Combined Loads (점성토 지반에 시공된 석션 케이슨 기초의 파괴포락선 산정)

  • Kang, Sangwook;Lee, Donghyun;Jung, Donghyuk;Han, Taek Hee;Ahn, Jaehun
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.95-103
    • /
    • 2024
  • The global increase in population and subsequent scarcity of terrestrial living spaces necessitates exploration of alternative habitats. Research into the development of underwater living areas provides promising avenues for the expansion of human living spaces and the use of marine environments. This study focuses on the failure envelope of suction caisson foundations subjected to combined loads in a marine setting, utilizing finite element analysis. The foundation is assumed to be embedded in clay characterized by a linear increase in undrained shear strength with depth, employing the von Mises constitutive model for the clay. The resulting failure envelope is represented as a tilted ellipse which expands as the undrained shear strength increases, maintaining a constant ratio between the major and minor axes. A comparative analysis of two suction caisson foundations with varying length-to-diameter ratios revealed that this ratio influences the dimensions of the failure envelope, with a tendency for the major-to-minor axis ratio to increase as the length-to-diameter ratio increases. These findings are critical for the design of suction caisson foundations in offshore environments.

Dynamic Shear Behavior Characteristics of PHC Pile-cohesive Soil Ground Contact Interface Considering Various Environmental Factors (다양한 환경인자를 고려한 PHC 말뚝-사질토 지반 접촉면의 동적 전단거동 특성)

  • Kim, Young-Jun;Kwak, Chang-Won;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.1
    • /
    • pp.5-14
    • /
    • 2024
  • PHC piles demonstrate superior resistance to compression and bending moments, and their factory-based production enhances quality assurance and management processes. Despite these advantages that have resulted in widespread use in civil engineering and construction projects, the design process frequently relies on empirical formulas or N-values to estimate the soil-pile friction, which is crucial for bearing capacity, and this reliance underscores a significant lack of experimental validation. In addition, environmental factors, e.g., the pH levels in groundwater and the effects of seawater, are commonly not considered. Thus, this study investigates the influence of vibrating machine foundations on PHC pile models in consideration of the effects of varying pH conditions. Concrete model piles were subjected to a one-month conditioning period in different pH environments (acidic, neutral, and alkaline) and under the influence of seawater. Subsequent repeated direct shear tests were performed on the pile-soil interface, and the disturbed state concept was employed to derive parameters that effectively quantify the dynamic behavior of this interface. The results revealed a descending order of shear stress in neutral, acidic, and alkaline conditions, with the pH-influenced samples exhibiting a more pronounced reduction in shear stress than those affected by seawater.

Coefficient of Earth Pressure at Rest Ko for Particulate Materials Under Repetitive Loading (장기간 반복하중을 받는 입자성 물질의 정지토압계수 Ko)

  • Kim, Naewon;Park, Junghee
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.5
    • /
    • pp.59-76
    • /
    • 2024
  • Soil undergoes numerous repetitive loads, making it crucial to estimate changes in effective horizontal stress for structural stability. This study investigates the variations in the coefficient of earth pressure at rest (Ko), void ratio, and shear wave velocity of granular materials during repetitive loading. Semi-cyclic compaction tests were performed under different initial stress-to-amplitude ratios throughout the loading history. The results indicate that the void ratio of all specimens decreases during cyclic compaction subjected to varying stress amplitude ratios, eventually stabilizing at a terminal void ratio-representing a stable deformation state. Variations in Ko under repetitive loading depend on the stress amplitude ratio and relative density, influenced by soil fabric and particle-scale mechanisms. Ko can be predicted through changes in shear wave velocity over the entire stress history as the number of cycles approaches infinity. This study presents new solutions for determining the resilient modulus in road pavement design and offers methods to estimate terminal settlement of foundation structures subjected to repetitive loading.