• Title/Summary/Keyword: geotechnical design

Search Result 1,815, Processing Time 0.027 seconds

Case Study of Ground Behavior Analysis of Soft and Hard Rock Layers with Fractured Zones in Deep Excavation (깊은 굴착에서 파쇄대를 갖는 연암 및 경암 지층의 지반 거동분석 사례연구)

  • Kim, Sung-Wook;Han, Byung-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.521-532
    • /
    • 2008
  • Supporting system design and construction management for the soft and hard rock layers with fractured zones are very important theme for the safety of temporary retaining wall, surrounding ground and structures in the urban deep excavation for the construction of subway, railway, building etc. The prevailing design method of supporting system for the soft and hard rock layers in the deep excavation is mostly carrying out by simplification without proper consideration for the characteristic of rock discontinuities. Therefore the behaviors of rock discontinuities and fractured zones dominate the whole safety of excavation work in the real construction stage, serious disaster due to the failure of temporary retaining wall can be induced in the case of developing large deformations in the ground and large axial forces in the supporting system. This paper introduces examples of deep excavation where the soft and hard rock layers with fractured zones were designed to be supported by shotcrete and rock bolt, deformations of corresponding ground and supporting systems in the construction period and increments of axial force in the upper earth anchors and strut due to the these deformations were investigated through detailed analysis of measurement data, the results were so used for the management of consecutive construction that led to the safe and economical completion of excavation work. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

Target Probability of Failure of Quay Wall Foundation for Reliability-Based Design (안벽기초 구조물의 신뢰성설계를 위한 목표파괴확률 결정)

  • Yoon, Gil-Lim;Yoon, Yeo-Won;Kim, Hong-Yeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.379-389
    • /
    • 2010
  • It is very important to determine a target probability of failure in reliability based design such as an allowable factor of safety in working stress design because they are indices to judge the stability of structures. We have carried out reliability analyses of nationwide gravity type quay walls and found that sliding and foundation failures of quay walls were dominant failure modes for every case of loads. And a target probability of failure for bearing capacity of foundation of quay wall was also determined in this study. Of several approaches which have been suggested until now, a couple of reasonable approaches were used. Firstly, in order to consider the safety margin of structures which have been executed so far, the reliability levels of existing structures were assessed. And then a mean probability of failure for the quay walls was estimated. In addition, life cycle cost(LCC) analyses for representative structures were performed. Probabilities of failure for several quay walls were calculated with changing the width of each quay wall section. LCC of quay wall which is requiring case by case during the service life was evaluated, and also the optimum probability of failure of quay wall which minimizes LCC was found. Finally, reasonable target probabilities of failure were suggested by comparing with mean probability of failure of existing structures.

  • PDF

Development of Design and Field Quality Control Techniques of Shallow Foundation Resting on Intermediate Geomaterials (중간토에 지지된 직접기초의 설계 및 현장품질관리기법 개발)

  • Byun, Young-Gi;Park, Young-Ho;Jeong, Hoon-Jun;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1148-1155
    • /
    • 2010
  • To suggest a modified shallow foundation design method which can be considered the scale effect of foundation on IGM(intermediate geomaterial) soil layer, the weathered soil layer that is uniformly formed up to 8m(2B) with over 50 N-value is selected and 3 times field loading tests are performed on several sized square-shaped shallow foundations with 30, 75, 150, 240 and 400cm in width respectively. Because the soil modulus of elasticity(Es) calculated by soil investigation and 1st field test(PBT) results showed an underestimated tendency, a modified correlation is required for the reasonable estimation of Es on the weathered soil. Also, the N-value was increased with an increasing in depth. However, the N-values around the test foundations showed the different values even though the foundations on the same level because the test site was arranged by excavation. Therefore, the more detail soil investigations are required for the each test foundations respectively. Since Es based on elasticity theory is determined by the stress distribution shape of the foundation and elasticity modulus of the soil, the scale effect considered pressure-settlement curve can be clearly derived from the correlation on stress distribution shape and the variation of soil elasticity modulus with depth. Therefore, the modified correlation will be suggested to estimate a reasonable Es on the weathered soil, and the scale effect considered shallow foundation design method is also developed based on the elastic theory and field tests in this research.

  • PDF

Analysis on the Rigid Connections between the Large Diameter Drilled Shaft and the Pile Cap for the Sea-Crossing Bridges with Multiple Pile Foundations (다주식 기초 해상교량에서 대구경 현장타설말뚝과 파일캡의 강결합에 대한 분석)

  • Cho, Sung-Min;Park, Sang-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.343-358
    • /
    • 2008
  • Piles of a bridge pier are connected with a column through a pile cap(footing). Behavior of the pile foundation can be different according to the connection method between piles and the pile cap. This difference causes a change of the design method. Connection methods between pile heads and the pile cap are divided into two groups ; rigid connections and hinge connections. KHBDC(Korea Highway Bridge Design Code) has specified to use rigid connection method for the highway bridge. In the rigid connection method, maximum bending moment of a pile occurs at the pile head and this helps the pile to prevent the excessive displacement. Rigid methods are also good to improve the seismic performance. However some specifications prescribe that conservative results through investigations for both the fixed-head condition and the free-head condition should be reflected in the design. This statement may induce an over-estimated design for the bridge which have very good quality structures with casing covered drilled shafts and the PC-house contained pile cap. Because the assumption of free-head conditions (hinge connections) are unreal for the elevated pile cap system with multiple piles of the long span sea-crossing bridges. On the other hand, elastic displacement method to evaluate the pile reactions under the pile cap is not suitable for this type of bridges due to impractical assumptions. So, full modeling techniques which analyze the superstructure and the substructure simultaneously should be performed. Loads and stress state of the very large diameter drilled shaft and the pile cap for Incheon Bridge which will the longest bridge in Korea were investigated through the full modeling for rigid connection conditions.

  • PDF

Application of Horizontal Subgrade Reaction Modulus to Bridge Abutment Design after Soil Improvement (연약지반 개량후 교대구간 수평지반반력계수 적용 사례)

  • Kim, Kyung-Tae;Park, See-Boum;Kim, Chang-Hyun;Lee, Jong-Bum;Yoon, Yea-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1228-1236
    • /
    • 2006
  • In soft ground, There are many case that Bridge Abutment is constructed after soil improvement in order to reduce the Negative Friction and prevent from Lateral Soil movements of Bridge Abutment. That section of Horizontal Subgrade Reaction $Modulus(K_h)$ derivation has much important mean due to Horizontal Stability of Abutment. It is come from behavior of Pile and Soil within depth of $1/\beta$. After Soil Improvement, however, If Bridge Abutment was construction, It's not impossible to carry out Field Investigation After Ground of Improved at design stage. Therefore, It's not able to derivate Horizontal Subgrade Reaction $Modulus(K_h)$. Therefore, in this case of study compare with Field Construction Test Data in order to derivation of Horizontal Subgrade Reaction $Modulus(K_h)$ and Reliability in terms of ground of Bridge Abutment by Sand Compaction Pile(SCP) during design of The 2nd Bridge Connection Road of Incheon International Airport. In this paper determine, Soil Property(The rate of strength increase, $c_u$ so on) and Horizontal Subgrade Reaction $Modulus(K_h)$ after soil improvement at design stage.

  • PDF

A Study on the Design Applicability of Soil Nailing Using Limit Equilibrium Analysis and Finite Element Model (한계평형 및 FEM 해석을 통한 Soil Nailing의 설계 적용성에 관한 연구)

  • Kim, Won-Cheul;Chun, Byung-Sik;Yoon, Chang-Ki;Park, Shin-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.301-310
    • /
    • 2004
  • The several computer programs for the design of soil nailed wall are often used in Korea. However, these programs have been used without and practical justification. Therefore, in order to evaluate the applicability of these programs for the design of soil nailing, these computer results were analyzed and compared with one another. The performance evaluations by the available programs, such as SNAILZ, TALREN97, SLOPE/W STABL6, and NAILMI6, were applied and the applied data were from 6 case history(21 section). The estimated factors of safety with available programs were compared with observed horizontal deformation from the field. This study showed that the program SNAILZ is most adequate tool for the design of soil nailed wall. Also, The finite element program SOILSTRUCT was applied for the analysis of nail inclination effect in soil nailed wall. The program SOILSTRUCT showed that the most optimal inclination of nail was $20^{\circ}$. However, the effect of nail inclination on the wall deformation was negligible. Also, the tension force of the nail were increased as the nail inclination increased, and the tension force of the nail increased as the depth increased, except the deepest nail. Therefore, the larger diameter nail should be considered if the inclination of nail is steeper than the suggested range, and the deeper nails should have the larger diameters than those of shallower nails except for the deepest one.

  • PDF

A Study on Analysis for the Characteristics of Fault Zone at Mica-schist for Reinforcement of Large-Span Tunnel (대단면 터널 보강을 위한 운모편암 단층대 특성 분석에 관한 연구)

  • Chung, Hoi-Yong;Kim, Young-Geun;Park, Yeon-Jun;You, Kwang-Ho
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.132-145
    • /
    • 2009
  • Faults in rock mass have strong influences on the behaviors of rock structure such as rock slope, tunnel and underground space. Thus, it is very important to analyse for the characteristics of fault rocks in design for tunnel. But, due to the limitation of geotechnical investigation in design stages, tunnel engineers have to carry out the face mapping and additional geological survey during tunnel excavation to find the distribution of faults and the engineering properties of faults for support and reinforcement design of tunnel. In this study, various geological survey and field tests were carried out to analyse the characteristics of the large thrust fault zone through the large sectional tunnel is constructed in mica-schist region. Also, the distribution of structural geology, the shape of thrust faults and the mechanical properties of fault rock were studied for the reasonable design of the reinforcement and support method for the highly fractured fault zone in the large-span tunnel.

Pilot Test of Grid-Type Underground Space Considering Underground Complex Plant Operation (지하 복합플랜트 운영 중 확장을 고려한 격자형 지하공간 파일럿 테스트)

  • Chulho Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.472-482
    • /
    • 2023
  • The grid-type or room-and-pillar method is applied for the purpose of mining horizontally buried minerals. In this study, design and pilot test were performed to apply the room-and-pillar method which uses natural rock as a rock pillar to the construction of underground space. The area where the pilot test was conducted was in stone mine and had good rock conditions with an appropriate depth (about 30 m) to apply the pilot test. The pilot test site was selected by reviewing accessibility and ground conditions and then site construction was performed through detailed ground investigation and design. The pilot test was designed with a column shape of 8×8 m and a cross-section of 8×12 m. The blasting pattern was determined through test blasting at the site, and blasting of 3 m excavation with 89 holes was performed. Through field observations, the average width of 12.5 m and the average height of 8.3 m were measured. Therefore, it is possible to proceed similar to the cross-sectional shape considered in the design.

An Evaluation of Allowable Bearing Capacity of Weathered Rock by Large-Scale Plate-Bearing Test and Numerical Analysis (대형평판재하시험 및 수치해석에 의한 풍화암 허용지지력 평가)

  • Hong, Seung-Hyeun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.10
    • /
    • pp.61-74
    • /
    • 2022
  • Considering that the number of cases in which a structure foundation is located on weathered rock has been increasing recently, for adequate design bearing capacity of a foundation on weathered rock, allowable bearing capacities of such foundations in geotechnical investigation reports were studied. With reference to the study results, the allowable bearing capacity of a foundation on weathered rock was approximately 400-700 kN/m2, with a large variation, and was considered a conservative value. Because the allowable bearing capacity of the foundation ground is an important index in determining the foundation type in the early design stage, it can have a significant influence on the construction cost and period according to the initial decision. Thus, in this study, six large-scale plate-bearing tests were conducted on weathered rock, and the bearing capacity and settlement characteristics were analyzed. According to the test results, the bearing capacities from the six tests exceeded 1,500 kN/m2, and it shows that the results are similar with the one of bearing capacity formula by Pressuremeter tests when compared with the various bearing capacity formula. In addition, the elastic modulus determined by the inverse calculation of the load-settlement behavior from the large-scale plate-bearing tests was appropriate for applying the elastic modulus of the Pressuremeter tests. With consideration of the large-scale plate-bearing tests in this study and other results of plate-bearing tests on weathered rock in Korea, the allowable bearing capacity of weathered rock is evaluated to be over 1,000 kN/m2. However, because the settlement of the foundation increases as the foundation size increases, the allowable bearing capacity should be restrained by the allowable settlement criteria of an upper structure. Therefore, in this study, the anticipated foundation settlements along the foundation size and the thickness of weathered rocks have been evaluated by numerical analysis, and the foundation size and ground conditions, with an allowable bearing capacity of over 1,000 kN/m2, have been proposed as a table. These findings are considered useful in determining the foundation type in the early foundation design.

A Reliability Analysis of Slope Stability of Earth-Rockfill Dam (Earth-Rockfill Dam사면파괴에 대한 신뢰도 연구(I))

  • 박현종;이인모
    • Geotechnical Engineering
    • /
    • v.7 no.3
    • /
    • pp.21-32
    • /
    • 1991
  • The purpose of this paper is to develop a reliability model for slope stability of Earth-rockfill dams which accounts for all uncertainties encountered. The uncertain factors of the design variables include the cohesion, the angle of internal friction, and the porewater Pressure in each zone. More specifically, the model errors in estimating those variables are studied in depth. To reduce the uncertainties due to model errors, updated design variables are obtained using Bayesian Theory. For stability analysis, both the two-dimesional stability analysis and the three-dimensional stability analysis where the end effects and the system reliability concept are considered are used for the reliability calculations. The deterministic safety factor by the three-dimensional analysis is lager than that by the two-dimensional anlysis. However, the probability of failure by the three-dimensional analysis is about 3.5 times larger that by the two-dimensional analysis. It is because the system reliability concept is used in the three-dimensional analysis. The sensitivity analysis shows that the probability of failure is more sensitive to the uncertainty of the cohesion than that of the angle of internal friction.

  • PDF