• Title/Summary/Keyword: geotechnical characteristic

Search Result 316, Processing Time 0.022 seconds

Case Study of Characteristic of Ground Deformation and Strut Axial Force Change in Long Span Deep Excavation(II) (장지간 깊은 굴착에서 지반변형 및 버팀보 축력변화 특성 사례연구(II))

  • Kim, Sung-Wook;Han, Byung-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.248-259
    • /
    • 2010
  • In the case of relatively good ground and construction condition in the deep excavation for the construction of subway, railway, building etc., flexible earth retaining systems are often used in an economical point of view. It is generally known that the mechanism of behavior in the flexible earth retaining system is relatively more complicated than the rigid earth retaining system. Moreover in the case of long span strut supporting system the analysis of strut axial force change becomes more difficult when the differences of ground condition and excavation work progress on both sides of excavation section are added. When deeper excavation than the specification or installation delay of supporting system is done or change of ground condition is faced due to the construction conditions during construction process, lots of axial force can be induced in some struts and that can threaten the safety of construction. This paper introduces one example of long span deep excavation where struts and rock bolts were used as a supporting system with flexible wall structure. The characteristics of ground deformation and strut axial force change, the measured data obtained during construction process, were analysed, the effects of relatively deeper excavation than the specification on one excavation side and rapid drawdown of ground water level on the other excavation side were deeply investigated from the viewpoint of mutual influences between ground deformations of both excavation sides and strut axial force changes. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

Physical and chemical analyses of ground-water by impacts of tunneling at coastal urban region in Busan (부산시 해안 인근 지역에서의 터널 굴착에 따른 지하수 거동 영향 평가)

  • Kim, Hyoung-Soo;Lee, Ju-Hyun;Ahn, Ju-Hee;Jeong, Ui-Jin;Kim, Jun-Mo;Yoon, Woon-Sang;Chung, Sang-Yong;Lee, Jin-Moo;Woo, Sang-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.457-464
    • /
    • 2005
  • In the case of tunneling, the equilibrium state of hydro-geologic environments destroy and change abruptly in some section of whole works. Specially, it's very possible for seawater to intrude toward the site of tunnel if the field is nearly located in a costal region. In this study, we have evaluated the mechanism related between groundwater flow and seawater intrusion that by impacts of tunneling. Various hydro-geological field tests have performed for getting four representative hydrogeologic properties of geologic formations such as transmissivity (T), storativity(S), longitudial dispersity(${\alpha}_L$), and effective porosity($n_e$). For the effect of tunneling, the numerical model was first simulated based on the governing equation of groundwater flow. The results showed that the maximum drawdown was 17.2m and the total inflow into the tunnel had the range from 0.48 to $3.63m^3/day/m$. Secondly, the three dimensional numerical model was analyzed to investigate a characteristic of seawater intrusion based on the previous simulated results of groundwater flow. The results showed the seawater moved as the range of $200{\sim}220m$ from the initial interface between seawater and groundwater toward the tunnel.

  • PDF

A Study on the Consolidation Behavior of Cohesive Soils Improved by Penetrated and Partly Penetrated Sand Compaction Piles (관통 및 미관통 SCP 개량지반의 압밀거동 비교연구)

  • Kim, Young-Nam;Chae, Young-Su;Lee, Kang-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.706-713
    • /
    • 2004
  • This paper introduced an alternative method called USCP (Unpenetrated Sand Compaction Pile). In USCP, the toe of the sand pile does not reach to the lower supporting layer. Hence it is possible to reduce the amount of sand required. However, the degree of improvement could not be the same as SCP. Effective soil improvement, nevertheless, might be possible by combining both methods. In this paper, an improved method that cross over both SCP and USCP was discussed. And in order to verify applicability to a clay layer, consolidation behaviors with different conditions were analyzed and compared using FEM(Finite Element Method) based on the elasto-viscosity theory. From the results, it is concluded for the characteristic of settlement of USCP that the lower degree of replacement and the smaller ratio of penetration($H_d/H$), the larger is the settlement of the lower part of the clay layer comparing to the layer with no improvement. It is also concluded that the ratios of allotment of stress (m) calculated from the final settlements with 30% of degree of replacement are $1.8{\sim}3.3$ for $H_d/H=lOO%,\;1.8{\sim}4.0\;for\;H_d/H=75%,\;and\;1.8{\sim}3.8\;for\;H_d/H=50%$. Besides, the ratio of allotment of stress decreased as the degree of replacement decreased.

  • PDF

Compression Characteristics of Municipal Solid Waste Codisposed with Fly Ash (플라이애쉬(F/A)가 혼합된 도시 쓰레기(MSW)의 압축 특성)

  • Park, Hyun-Il;Lee, Seung-Rae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.3
    • /
    • pp.41-49
    • /
    • 2003
  • If MSW(Municipal Solid Waste) landfill is used as a foundation ground of construction site, the change of loading condition may cause a large amount of compression in MSW landfill. Therefore, the reinforcement for the loose compression nature of MSW landfill would be very important design factor to geotechnical engineers in considering the end-use of the landfill. In this study, a possible technique for stabilizing MSW landfill with use of codisposal of municipal solid waste and Fly Ash is discussed. In order to estimate the stabilization of compression characteristic of codisposed landfill, large compression test and lysimeter test were performed. According to the test results, as the proportion of Fly Ash increases, the compression might be reduced, but the permeability might be also reduced. Therefore, it is necessary to take into account the both characteristics changes in real application.

  • PDF

The Seismic Behavior of Corrugated Steel Plate Lining in Cut-and-Cover Tunnel (개착식 터널에서 파형강판 라이닝의 동적 거동 특성)

  • Kim Jung-Ho;Kim Nag-Young;Lee Yong-Jun;Lee Seung-Ho;Chung Hyung-Sik
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.233-247
    • /
    • 2005
  • Most tunnel lining material which has been used in the domestic is a concrete. But many problems as the construction period, the cost, and the crack occurrence for the design, construction, and management were happened in the concrete lining. For this reason, many research institutes like the Korea Highway Corporation recognize the necessity of an alternate material development and grow on the interest for that. So in this study, the seismic behaviour characteristics for the application of the Corrugated Steel Plate Lining in cut-and-cover tunnel are evaluated as several conditions for the backfill height, the cutting slope, and the relative density of backfill soil are changed. The compressive stress which is calculated in the Corrugated Steel Plate Lining by the seismic load is decreased as the backfill height increases and the cut slope grows gentle. Also, the moment shows the tendency of decrease according to the increase of the backfill height. But in the case of the relative density of the backfill soil is small, the moment increases according to the increase of the backfill height and affects the dynamic behaviour characteristic. So it is considered that the relative density of the backfill soil is also the important point. As the result in analyzing the seismic response characteristics of the reinforcement spacing of the Corrugated Steel Plate, the variation in the compressive force is hardly happened, but the moment and the shear force increase on the reinforcement spacing being narrow.

  • PDF

Application of risk analysis and assessment considering tunnel stability and environmental effects in tunnel design (터널 안정성 및 환경성을 고려한 위험도 평가기법의 적용)

  • Kim, Young-Geun;Kim, Do-Hyung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • Recently, because of the various factors by uncertainty of underground, the risks in tunnelling have been occurred increasingly. Therefore, it is very important to estimate and control the risks considering geotechnical conditions for tunnel stability and environmental problems by tunnel construction. In this study, the risk analysis for tunnel stability was carried out by classifying the risk factors such as ground support capacity, ground settlement, the inflow of groundwater into the tunnel and the damage by the earthquake. Also, the risk assessment for the environmental problems was performed by calculating the vibration and noise by blasting and the drawdown of the groundwater level caused by tunnel construction. Each risk factor was evaluated quantitatively based on the probabilistic and statistic technique, then it was analyzed the distribution characteristic along overall tunnel site. Finally, it was evaluated that how much each risk factor influences on the construction cost with a period for tunnel construction, so it is possible to perform reasonable tunnel design which was capable of minimizing the risks in the tunnel construction.

  • PDF

Influence of spatial variability on unsaturated hydraulic properties

  • Tan, Xiaohui;Fei, Suozhu;Shen, Mengfen;Hou, Xiaoliang;Ma, Haichun
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.419-429
    • /
    • 2020
  • To investigate the effect of spatial variability on hydraulic properties of unsaturated soils, a numerical model is set up which can simulate seepage process in an unsaturated heterogeneous soil. The unsaturated heterogeneous soil is composed of matrix sand embedded with a small proportion of clay for simulating the heterogeneity. Soil-water characteristic curve and unsaturated hydraulic conductivity curve of the unsaturated soil are expressed by Van Genuchten model. Hydraulic parameters of the matrix sand are considered as random fields. Different autocorrelation lengths (ACLs) of hydraulic parameter of the matrix sand and different proportions of clay are assumed to investigate the influence of spatial variability on the equivalent hydraulic properties of the heterogeneous soil. Four model sizes are used in the numerical experiments to investigate the influence of scale effects and to determine the sizes of representative volume element (RVE) in the numerical simulations. Through a number of Monte Carlo simulations of unsaturated seepage analysis, the means and the coefficients of variations (COVs) of the equivalent hydraulic parameters of the heterogeneous soil are calculated. Simulations show that the ACL and model size has little influence on the means of the equivalent hydraulic parameters, but they have a large influence on the COVs of the equivalent hydraulic parameters. The size of an RVE is mainly affected by the ACL and the proportion of heterogeneity. The influence of spatial variability on the hydraulic parameters of the heterogeneous unsaturated soil can be used as a guidance for geotechnical reliability analysis and design related to unsaturated soils.

Characteristics of Soil Parameter for Lade's Single Work-Hardening Constitutive Model with Dry Density of Pocheon Granite Soil (포천 화강토의 건조단위중량에 따른 Lade의 단일항복면 구성모델의 토질매개변수 특성)

  • Cho, Won-Beom;Kim, Chan-Kee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.29-36
    • /
    • 2011
  • In this study, a series of the isotropic compression-expansion tests and the drained triaxial tests were performed on Pocheon granite soil with various the dry densities of $16.67kN/m^3$, $17.26kN/m^3$ and $17.65kN/m^3$. Using the tests results the characteristic of the parameters of Lade's single hardening constitutive model were investigated. The soil parameters such as kur and n related to elastic behavior, m and ${\eta}_1$ related to failure criterion, c and p related to hardening function and ${\psi}_2$ and ${\mu}$ related to plastic potential show in a positive linear relationship with the dry density. Since the soil parameters h and representing yield function do not change much to relative density and also are closely related to failure criterion, they can be replaced by failure criterion. We also observed that predicted values from the Lade's single hardening constitutive model were well consistent with the observed data.

Characteristics of Structure Settlement due to Urban Railway Construction on Reclaimed Land (해안매립지반의 도시철도 시공에 따른 구조물 침하 특성 분석)

  • Shin, Eun-Chul;Rim, Yong-Kwan;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.1
    • /
    • pp.23-33
    • /
    • 2012
  • The stability of urban railway foundation can be a problem due to the excessive settlement. The settlement at the base of railway is monitored by the installed settlement gauges. The piezometer and pore water pressure measurement device are installed to measure the variation of pore water pressure and ground water table during the continuous pullout of sheet piles which were used for the braced cut. The settlement of railway is predicted with using the computer program CAIN RDA. The input data for the numerical analysis are obtained from the field soil exploration data and soil properties. The surcharged load from landscaping over the ground surface and the weight of train are taken into account for the estimation of settlement. As a result of numerical analysis, the range of settlement for six different Sites is from 5.94 cm to 12.77 cm. Thus, the settlement level at Site 2 is occurred 12.77 cm which is higher than the allowable settlement of 10 cm.

Case Study of Characteristic of Ground Deformation and Strut Axial Force Change in Long Span Deep Excavation(I) (장지간 깊은 굴착에서 지반변형 및 버팀보 축력변화 특성 사례연구(I))

  • Kim, Sung-Wook;Han, Byung-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.308-319
    • /
    • 2009
  • In the case of relatively good ground and construction condition in the deep excavation for the construction of subway, railway, building etc., flexible earth retaining systems are often used in an economical point of view. It is generally known that the mechanism of behavior in the flexible earth retaining system is relatively more complicated than the rigid earth retaining system. Moreover in the case of long span strut supporting system the analysis of strut axial force change becomes more difficult when the differences of ground condition and excavation work progress on both sides of excavation section are added. When deeper excavation than the specification or installation delay of supporting system is done or change of ground condition is faced due to the construction conditions during construction process, lots of axial force can be induced in some struts and that can threaten the safety of construction. This paper introduces two examples of long span deep excavation where struts and rock bolts were used as a supporting system with flexible wall structure. And the sections of two examples are 50 meters apart in one construction site, they have almost similar design and construction conditions. The characteristics of ground deformation and strut axial force change were analysed, the similarity and difference between measurement results of tow examples were compared and investigated. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF